Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Radon-Nikodým theorems for multimeasures and transition multimeasures


Author: Nikolaos S. Papageorgiou
Journal: Proc. Amer. Math. Soc. 111 (1991), 465-474
MSC: Primary 46G10; Secondary 28B05, 28B20
MathSciNet review: 1036989
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove two set valued Radon-Nikodym theorems. One for simple multimeasures and the other for transition multimeasures. In the process of proving the second theorem, we obtain a result concerning transition selectors of transition multimeasures, which is of independent interest.


References [Enhancements On Off] (What's this?)

  • [1] Zvi Artstein, Set-valued measures, Trans. Amer. Math. Soc. 165 (1972), 103–125. MR 0293054, 10.1090/S0002-9947-1972-0293054-4
  • [2] Idris Assani, Quelques résultats liés aux ensembles décomposables de 𝐿¹_{𝐸}, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 19, 641–644 (French, with English summary). MR 664639
  • [3] Lawrence E. Blume, New techniques for the study of stochastic equilibrium processes, J. Math. Econom. 9 (1982), no. 1-2, 61–70. MR 637254, 10.1016/0304-4068(82)90017-9
  • [4] Alain Costé, Sur les multimesures à valeurs fermées bornées d’un espace de Banach, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), A567–A570 (French). MR 0369652
  • [5] Alain Costé, La propriété de Radon-Nikodým en intégration multivoque, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 22, Aii, A1515–A1518 (French, with English summary). MR 0374371
  • [6] A. Costé and R. Pallu de la Barrière, Radon-Nikodým theorems for set-valued measures whose values are convex and closed, Comment. Math. Prace Mat. 20 (1977/78), no. 2, 283–309 (loose errata). MR 519365
  • [7] Gerard Debreu and David Schmeidler, The Radon-Nikodým derivative of a correspondence, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 41–56. MR 0407230
  • [8] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
  • [9] N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
  • [10] L. Drewnowski, Additive and countably additive correspondences, Comment. Math. Prace Mat. 19 (1976), no. 1, 25–54. MR 0422564
  • [11] N. Dunford and J. Schwartz, Linear operators I, Wiley, New York, 1958.
  • [12] C. Godet-Thobie, Some results about multimeasures and their selectors, Measure theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979) Lecture Notes in Math., vol. 794, Springer, Berlin, 1980, pp. 112–116. MR 577965
  • [13] Christian Hess, Mesurabilité, convergence et approximation des multifonctions à valeurs dans un e.l.c.s, Sém. Anal. Convexe 15 (1985), Exp. No. 9, 100 (French). With a loose erratum (4 pp.). MR 857781
  • [14] Fumio Hiai, Radon-Nikodým theorems for set-valued measures, J. Multivariate Anal. 8 (1978), no. 1, 96–118. MR 0583862
  • [15] Dimitrios A. Kandilakis and Nikolaos S. Papageorgiou, On the properties of the Aumann integral with applications to differential inclusions and control systems, Czechoslovak Math. J. 39(114) (1989), no. 1, 1–15. MR 983479
  • [16] Heinz-Albrecht Klei, Compacité faible de parties décomposables de 𝐿¹_{𝐸}, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 965–967 (French, with English summary). MR 777586
  • [17] R. Pallu de la Barriere, Introduction a l'etude des multi-mesures, in Seminaire Initiation a l'Analyse (G. Choquet, M. Rogalski, and J. Saint Raymond, eds.), 19e année 1979/80, no. 7, 7-01-7-23.
  • [18] Gilles Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas 𝑙¹, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 17, A747–A749 (French, with English summary). MR 0511805
  • [19] Lawrence H. Riddle and J. J. Uhl Jr., Martingales and the fine line between Asplund spaces and spaces not containing a copy of 𝑙₁, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 145–156. MR 668544
  • [20] M.-F. Sainte-Beuve, Some topological properties of vector measures with bounded variation and its applications, Ann. Mat. Pura Appl. (4) 116 (1978), 317–379. MR 506985, 10.1007/BF02413878
  • [21] K. Vind, Edgeworth allocations in an exchange economy with many traders, Internat. Econom. Rev. 5 (1964), 165-177.
  • [22] Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization 15 (1977), no. 5, 859–903. MR 0486391
  • [23] Albert Wilansky, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978. MR 518316

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G10, 28B05, 28B20

Retrieve articles in all journals with MSC: 46G10, 28B05, 28B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1036989-4
Keywords: Multimeasure, transition multimeasure, vector measure, bounded variation, Radon-Nikodym property, selection theorem, measurable multifunctions
Article copyright: © Copyright 1991 American Mathematical Society