Criteria for the extremality of the Koebe mapping

Authors:
D. Bshouty and W. Hengartner

Journal:
Proc. Amer. Math. Soc. **111** (1991), 403-411

MSC:
Primary 30C50; Secondary 30C55

MathSciNet review:
1037204

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A criterion is developed which gives a necessary condition on a real functional in order that the Koebe Mapping be extremal for this functional in the well known class of normalized univalent functions. This is applied to the coefficient problem of as well as to the problem of univalence of sections of the power series expansion of .

**[1]**D. Bshouty and W. Hengartner,*Local behaviour of coefficients in subclasses of 𝑆*, Topics in complex analysis (Fairfield, Conn., 1983) Contemp. Math., vol. 38, Amer. Math. Soc., Providence, RI, 1985, pp. 77–84. MR**789448**, 10.1090/conm/038/09**[2]**D. Bshouty and W. Hengartner,*A variation of the Koebe mapping in a dense subset of 𝑆*, Canad. J. Math.**39**(1987), no. 1, 54–73. MR**889106**, 10.4153/CJM-1987-004-8**[3]**Peter L. Duren,*Univalent functions*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR**708494****[4]**A. Z. Grinshpan,*On the power stability for the Bieberbach inequality*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**125**(1983), 58–64 (Russian). Analytic number theory and the theory of functions, 5. MR**697766****[5]**I. M. Milin and A. Z. Grinshpan,*Logarithmic coefficients means of univalent functions*, Complex Variables Theory Appl.**7**(1986), no. 1-3, 139–147. MR**877659****[6]**W. K. Hayman and J. A. Hummel,*Coefficients of powers of univalent functions*, Complex Variables Theory Appl.**7**(1986), no. 1-3, 51–70. MR**877651****[7]**M. S. Robertson,*The partial sums of multivalently star-like functions*, Ann. of Math. (2)**42**(1941), 829–838. MR**0004905****[8]**A. C. Schaeffer and D. C. Spencer,*The coefficients of schlicht functions*, Duke Math. J.**10**(1943), 611–635. MR**0009631**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C50,
30C55

Retrieve articles in all journals with MSC: 30C50, 30C55

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1991-1037204-8

Article copyright:
© Copyright 1991
American Mathematical Society