Singularly continuous measures in Nevai's class

Author:
D. S. Lubinsky

Journal:
Proc. Amer. Math. Soc. **111** (1991), 413-420

MSC:
Primary 42C05; Secondary 39A10

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039259-3

MathSciNet review:
1039259

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a nonnegative Borel measure on , with and with support of Lebesgue measure zero. We show that there exist and such that if

**[1]**F. Delyon, B. Simon, and B. Souillard,*From power pure point to continuous spectrum in disordered systems*, Ann. Inst. H. Poincaré Phys. Theor.**42**(1985), 283-309. MR**797277 (87d:35098)****[2]**M. F. Barnsley, J. S. Geronimo, and A. N. Harrington,*Almost periodic Jacobi matrices associated with Julia sets for polynomials*, Commun. Math. Phys.**99**(1985), 303-317. MR**795106 (87k:58123)****[3]**D. Bessis, J. S. Geronimo, and P. Moussa,*Function weighted measures and orthogonal polynomials on Julia sets*, Constr. Approx.**4**(1988), 157-173. MR**932652 (89h:58085)****[4]**D. S. Lubinsky,*A survey of general orthogonal polynomials for weights on finite and infinite intervals*, Acta Appl. Math.**10**(1987), 237-296. MR**920673 (89h:42030)****[5]**-,*Jump distributions on**whose orthogonal polynomials have leading coefficients with given asymptotic behavior*, Proc. Amer. Math. Soc.**104**(1988), 516-524. MR**962822 (90c:42031)****[6]**Al. Magnus and W. Van Assche,*Sieved orthogonal polynomials and discrete measures with jumps dense in an interval*, Proc. Amer. Math. Soc.**106**(1989), 163-173. MR**953001 (89i:42036)****[7]**A. Maté, P. Nevai, and V. Totik,*Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle*, Constr. Approx.**1**(1985), 63-69. MR**766095 (85j:42045)****[8]**H. N. Mhaskar and E. B. Saff,*On the distribution of zeros of polynomials orthogonal on the unit circle*, J. Approx. Theory (to appear). MR**1074079 (92f:42030)****[9]**P. Nevai,*Orthogonal polynomials*, Mem. Amer. Math. Soc., no. 213, Amer. Math. Soc., Providence, RI, 1979. MR**519926 (80k:42025)****[10]**-,*Geza Freud orthogonal polynomials and Christoffel functions. A case study*, J. Approx. Theory**48**(1986), 3-167. MR**862231 (88b:42032)****[11]**P. Nevai and V. Totik,*Orthogonal polynomials and their zeros*(to appear). MR**1018677 (90i:33021)****[12]**E. A. Rahmanov,*On the asymptotics of the ratio of orthogonal polynomials*, Math. USSR Sbornik**32**(1977), 199-213.**[13]**E. B. Saff,*Orthogonal polynomials from a complex perspective*, Orthogonal Polynomials: Theory and Practice (ed. P. Nevai), NATO ASI Series, vol. 296, Kluwer, Dordrecht, pp. 363-393. MR**1100302 (92m:42029)****[14]**H. Stahl and V. Totik,*th root asymptotic behavior of orthonormal polynomials*, manuscript, Orthogonal Polynomials: Theory and Practice (ed. P. Nevai), NATO ASI Series, vol. 294, Kluwer, Dordrecht, 1990, pp. 395-418. MR**1100303 (92g:42015)****[15]**G. Szegö,*Orthogonal polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1939, 4th ed., 1975.**[16]**J. L. Ullman and M. F. Wyneken,*Weak limits of zeros of orthogonal polynomials*, Constr. Approx.**2**(1986), 339-347. MR**892160 (88e:42048)****[17]**W. Van Assche,*Asymptotics for orthogonal polynomials*, Lecture Notes in Math., vol. 1265, Springer, Berlin, 1987. MR**903848 (88i:42035)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42C05,
39A10

Retrieve articles in all journals with MSC: 42C05, 39A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039259-3

Keywords:
Orthogonal polynomials,
recurrence relations,
Nevai's class ,
singularly continuous measures

Article copyright:
© Copyright 1991
American Mathematical Society