Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A criterion for the nonporosity of a general Cantor set

Author: Paul D. Humke
Journal: Proc. Amer. Math. Soc. 111 (1991), 365-372
MSC: Primary 26A99; Secondary 28A05
MathSciNet review: 1039532
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to prove that under quite general conditions, a closed nowhere dense perfect set is non-$ \sigma $-porous if and only if it is nonporous.

References [Enhancements On Off] (What's this?)

  • [D] E. P. Dolženko, Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14. (Russian) MR 0217297 (36:388)
  • [HT] P. D. Humke and B. S. Thomson, A porosity characterization of symmetric perfect sets, Classical Real Analysis, Contemp. Math., no. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 81-85. MR 807980 (86m:26004)
  • [T1] B. S. Thomson, Derivation basis on the real line. II, Real Anal. Exchange, vol. 8, no. 2, 1982/83, pp. 278-442. MR 700194 (84i:26008b)
  • [T2] -, Real functions, Lecture Notes in Math., vol. 1170, Springer-Verlag, Berlin and New York, 1985. MR 818744 (87f:26001)
  • [Z1] L. Zajíček, Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $ (q)$, Časopis Pést. Mat. 101 (1976), 350-359. MR 0457731 (56:15935)
  • [Z2] -, Porosity and $ \sigma $-porosity, Real Anal. Exchange, vol. 13, no. 2, 1987/88, pp. 314-350. MR 943561 (89e:26009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A99, 28A05

Retrieve articles in all journals with MSC: 26A99, 28A05

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society