Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free subalgebras of enveloping fields


Authors: L. Makar-Limanov and P. Malcolmson
Journal: Proc. Amer. Math. Soc. 111 (1991), 315-322
MSC: Primary 16K40; Secondary 16D40, 16S30, 17B35
DOI: https://doi.org/10.1090/S0002-9939-1991-1041015-7
MathSciNet review: 1041015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a field of characteristic zero and $ L$ a nonabelian Lie algebra over $ K$. We show that the skew field of fractions of the enveloping algebra of $ L$ over $ K$ contains a free noncommutative $ K$-algebra when $ L$ is solvable or finite-dimensional.


References [Enhancements On Off] (What's this?)

  • [BR] W. Borho and R. Rentschler, Oresche Teilmengen in Einhüllenden Algebren, Math. Ann. 217 (1975), 201-210. MR 0401853 (53:5680)
  • [BMP] M. R. Bremner, R. V. Moody, and J. Patera, Tables of dominant weight multiplicities for representations of simple Lie algebras, Marcel Dekker, New York, 1985. MR 779462 (86f:17002)
  • [J] N. Jacobson, Lie algebras, Wiley-Interscience, New York, 1962. MR 0143793 (26:1345)
  • [Li] A. Lichtman, On matrix rings and linear groups over a field of fractions of enveloping algebras and group rings. I, J. Algebra 88 (1984), 1-37. MR 741929 (85c:17006)
  • [Lo] M. Lorentz, On free subalgebras of certain division algebras, Proc. Amer. Math. Soc. 98 (1986), 401-405. MR 857930 (87m:16040)
  • [M-L] L. Makar-Limanov, On free subobjects of skew fields, Methods in Ring Theory, Reidel, Boston, 1984, pp. 281-285. MR 770598
  • [M-L'] -, The skew field of fractions of the Weyl algebra contains a free noncommutative subalgebra, Comm. Algebra 11 (1983), 2003-2006. MR 709019 (84j:16012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16K40, 16D40, 16S30, 17B35

Retrieve articles in all journals with MSC: 16K40, 16D40, 16S30, 17B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1041015-7
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society