Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Systems of equations in the predual of a von Neumann algebra


Author: Michael Marsalli
Journal: Proc. Amer. Math. Soc. 111 (1991), 517-522
MSC: Primary 46L10; Secondary 47A62, 47D27
MathSciNet review: 1042269
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A von Neumann algebra $ \mathcal{A}$ on a separable, complex Hilbert space $ \mathcal{H}$ has property $ {{\mathbf{A}}_n}$ if for every $ n \times n$ array $ \{ {f_{i,j}}\} $ of elements in the predual there exists sequences $ \{ {x_i}\} ,\{ {y_j}\} $ in $ \mathcal{H}$ such that $ {f_{i,j}}(A) = (A{x_i},{y_j})$ for all $ A$ in $ \mathcal{A}$ and $ 0 \leq i,j < n$. We show that the von Neumann algebras with property $ {{\mathbf{A}}_{{\aleph _0}}}$ are the von Neumann algebras with properly infinite commutant. We describe how these properties are transformed by the tensor product. We characterize the abelian von Neumann algebras with property $ {{\mathbf{A}}_n}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10, 47A62, 47D27

Retrieve articles in all journals with MSC: 46L10, 47A62, 47D27


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-1042269-3
PII: S 0002-9939(1991)1042269-3
Keywords: Von Neumann algebra, dual algebra, predual
Article copyright: © Copyright 1991 American Mathematical Society