Differentiable functions which do not satisfy a uniform Lipschitz condition of any order

Author:
Masayoshi Hata

Journal:
Proc. Amer. Math. Soc. **111** (1991), 443-450

MSC:
Primary 26A16; Secondary 26A27

DOI:
https://doi.org/10.1090/S0002-9939-1991-1045138-8

MathSciNet review:
1045138

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to construct two kinds of absolutely continuous functions. One is differentiable *everywhere* but does not satisfy a uniform Lipschitz condition of any order on some large class of subintervals, while the other is differentiable almost everywhere but does not satisfy a uniform Lipschitz condition of any order on *any* subintervals.

**[1]**A. S. Besicovitch and H. D. Ursell,*Sets of fractional dimensions*(V):*On dimensional numbers of some continuous curves*, J. London Math. Soc.**12**(1937), 18-25.**[2]**G. Faber,*Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion*, Jber. Deutsch. Math. Verein.**16**(1907), 538-540.**[3]**G. H. Hardy,*Weierstrass's non-differentiable function*, Trans. Amer. Math. Soc.**17**(1916), 301-325. MR**1501044****[4]**M. Hata and M. Yamaguti,*The Takagi function and its generalization*, Japan J. Appl. Math.**1**(1984), 183-199. MR**839313 (87g:26005)****[5]**E. W. Hobson,*The theory of functions of a real variable*II, Dover, New York, 1957, pp. 412-421.**[6]**Y. Katznelson and K. Stromberg,*Everywhere differentiable, nowhere monotone functions*, Amer. Math. Monthly**81**(1974), 349-354. MR**0335701 (49:481)****[7]**J. C Oxtoby,*Measure and category*, Springer-Verlag, New York, Heidelberg, and Berlin, 1971. MR**584443 (81j:28003)****[8]**R. Salem,*On some singular monotonie functions which are strictly increasing*, Trans. Amer. Math. Soc.**53**(1943), 427-439. MR**0007929 (4:217b)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A16,
26A27

Retrieve articles in all journals with MSC: 26A16, 26A27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1045138-8

Keywords:
Lipschitz conditions,
discontinuous derivatives

Article copyright:
© Copyright 1991
American Mathematical Society