Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the action of Steenrod squares on polynomial algebras


Author: William M. Singer
Journal: Proc. Amer. Math. Soc. 111 (1991), 577-583
MSC: Primary 55S10; Secondary 55Q10, 55Q40, 55S05, 55T15
DOI: https://doi.org/10.1090/S0002-9939-1991-1045150-9
MathSciNet review: 1045150
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {P_s}$ be the $ \bmod - 2$ cohomology of the elementary abelian group $ (Z/2Z) \times \cdots \times (Z/2Z)$ ($ s$ factors). The $ \bmod - 2$ Steenrod algebra $ A$ acts on $ {P_s}$ according to well-known rules. If $ {\mathbf{A}} \subset A$ denotes the augmentation ideal, then we are interested in determining the image of the action $ {\mathbf{A}} \otimes {P_s} \to {P_s}$: the space of elements in $ {P_s}$ that are hit by positive dimensional Steenrod squares. The problem is motivated by applications to cobordism theory [P1] and the homology of the Steenrod algebra [S]. Our main result, which generalizes work of Wood [W], identifies a new class of hit monomials.


References [Enhancements On Off] (What's this?)

  • [A] J. F. Adams, On formulae of Thom and Wu, Proc. London Math. Soc. 11 (1961). MR 0139177 (25:2613)
  • [BP] E. Brown and F. P. Peterson, $ {H^ * }(MO)$ as an algebra over the Steenrod algebra, Notas Mat. Simpos. 1 (1975), 11-21. MR 761717
  • [P1] F. P. Peterson, $ A$-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), 311-312. MR 974987 (90a:55031)
  • [P2] -, Generators of $ {H^ * }(R{P^\infty } \wedge R{P^\infty })$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., no. 833, April 1987.
  • [S] W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), 493-523. MR 1022818 (90i:55035)
  • [W] R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), 307-309. MR 974986 (90a:55030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S10, 55Q10, 55Q40, 55S05, 55T15

Retrieve articles in all journals with MSC: 55S10, 55Q10, 55Q40, 55S05, 55T15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1045150-9
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society