SOME ESTIMATES FOR HARMONIC MEASURES. II

JAMES A. JENKINS

(Communicated by Clifford J. Earle, Jr.)

Abstract. FitzGerald, Rodin, and Warschawski proved that, for a continuum of given diameter in the closed unit disc, the harmonic measure at the center is minimized when it is an arc on the circumference. A very simple proof of this result is given, using the method of the extremal metric.

In [1], FitzGerald, Rodin, and Warschawski gave the solution for two extremal problems for the harmonic measure of a continuum lying in the unit disc. These results may be stated as follows, using the following notations: F is the closed unit disc $|z| < 1$, E the open unit disc, C a continuum in F not containing the origin, G the component of $E - C$ containing the origin, α the border entity of G determined by C, and $\omega(0, \alpha, G)$ the harmonic measure of α at 0 with respect to G.

I. If C has diameter δ, $\omega(0, \alpha, G) \geq \frac{1}{2\pi} \theta$ where θ is the angular measure of an arc on $|z| = 1$ of diameter δ, with equality precisely in that case.

II. If C subtends an angle of measure θ equal at most to π at 0, $\omega(0, \alpha, G) \geq \frac{1}{2\pi} \theta$ with equality if and only if C is an arc of angular measure θ on $|z| = 1$.

In [2], the present author pointed out that by using triad modules a very simple proof of II can be given by the method of the extremal metric. Now we will observe that I is an immediate consequence of the extremal property of the Mori extremal domain.

The extremal property of the Mori extremal domain [3] can be stated as follows:

III. Let C^* be a continuum not containing the origin or the point at infinity which has two points in $|z| \leq 1$ of distance $\geq \delta > 0$. Let Γ^* be the homotopy...
class of rectifiable Jordan curves separating C^* from 0 and ∞. Then the module $m(\Gamma^*)$ of Γ^* is maximal precisely when C^* is an arc of diameter δ on $|z| = 1$.

To derive I from III, we remark first, as in [2], that we may assume C meets $|z| = 1$. Then I is equivalent to maximizing the triad module $m(0, \beta, G)$ where β is the open boundary arc of G on $|z| = 1$. Let \tilde{C} be the reflection of C in $|z| = 1$, $C^* = C \cup \tilde{C}$. Evidently $m(0, \beta, G) = 2m(\Gamma^*)$. Now I follows at once from III.

BIBLIOGRAPHY

