CONVERGENCE OF ARGUMENTS
OF BLASCHKE PRODUCTS IN L_p-METRICS

A. V. RYBKIN

(Communicated by Paul S. Muhly)

Abstract. It is shown that the naturally defined argument of a Blaschke product is a function which is the harmonic conjugate of an integrable function of constant sign. A direct construction of this function is obtained. This fact allows us to investigate the relation between conditions on the zeros of a Blaschke product and the convergence of the arguments of its partial finite subproducts in L_p-metrics, $0 < p \leq \infty$.

1. Introduction

Let $D \equiv \{z: |z| < 1\}$, $T \equiv \partial D$. Given $\{z_k\} \equiv \sigma \subset D$ (the points $\{z_k\}$ are enumerated taking into account their multiplicity), we construct the Blaschke product

\[B(z) = \prod_{k} b_k(z), \quad b_k(z) = \frac{z_k - z}{1 - \overline{z_k} z}, \quad z \in D. \]

We suppose for the sake of simplicity that $0 \notin \sigma$. It is well known that the product (1.1) converges in D iff the Blaschke condition

\[\sum_{k} (1 - |z_k|) < \infty \quad \text{or} \quad \sum_{k} \log \frac{1}{|z_k|} < \infty \]

is satisfied.

When investigating the spectral shift function and the trace formula for non-selfadjoint operators [8] and in some problems of complex analysis, it is important to consider the log $B(z)$. It is natural to define $\log B(z)$ on the disc D with radial cuts from z_k to $\xi_k \equiv \frac{z_k}{|z_k|}$ in order to have

\[\arg(B_1 B_2) = \arg B_1 + \arg B_2. \]

We are going to consider the behavior of $\log B(z)$ on T. This function can be represented in the form of a series (see (2.2)). The direct investigation of
this series is difficult. The basis for our analysis is that this series represents a function which is the harmonic conjugate of some integrable function and which can be exactly constructed from σ (Theorem 2). This fact allows us to study the convergence of the series constructed in the different spaces L_p, $0 < p \leq \infty$, in terms of σ.

Let $f(\xi) = f(e^{i\phi}) \equiv f(\phi)$ be the boundary values of $f(z)$, $z \in \mathbb{D}$ on \mathbb{T}, and let \tilde{f} be the harmonic conjugate of f. The symbol C will be used to denote nonessential constants. In what follows we are going to use the standard notation of [3, 5].

2. The choice of the value of the argument: the basic theorem

Let $\nu_k(\phi) \equiv \arg b_k(\phi)$ be the branch of the argument of the Blaschke factor, which is fixed by the condition $\nu_k(\phi_k \pm 0) = \mp \pi$, where $\phi_k \equiv \arg z_k$. Then (1.1) leads to the formula

$$\tan \nu_k(\phi) = \frac{(1 - |z_k|^2) \sin(\phi - \phi_k)}{2|z_k| - (1 + |z_k|^2) \cos(\phi - \phi_k)}.$$

Hence,

$$(2.1) \quad \nu_k(\phi) = 2 \arctan \left\{ \frac{1 - |z_k|}{1 + |z_k|} \cot \frac{\phi - \phi_k}{2} \right\}.$$

Definition. The formal series

$$(2.2) \quad \nu(\phi) = \arg B(\phi) = \sum_k \nu_k(\phi)$$

is called the principal value $\nu(\phi)$ of the argument of the Blaschke product B on \mathbb{T}.

If the series (2.2) converges in some sense, then the natural condition (1.3) is obviously satisfied.

We now consider the product

$$(2.3) \quad G(z) = \left(\prod_k g_k(z) \right)^2, \quad g_k(z) = \frac{\xi_k - z}{1 - \overline{z_k}z}$$

in \mathbb{D}.

Theorem 1. The product $G(z)$ converges in \mathbb{D} iff the Blaschke condition is satisfied. The function $G(z)$ is an outer function and $\|G\|_\infty < 1.$

Proof. The first part of the theorem is a direct consequence of the equality

$$(2.4) \quad 1 - g_k(z) = 1 - \frac{\xi_k - z}{1 - \overline{z_k}z} = \frac{1 - |z_k|^2}{1 - \overline{z_k}z}.$$

Henceforth, $\|f\|_p = \left(\frac{1}{2\pi} \int_0^{2\pi} |f|^p \, d\phi \right)^{1/p}, \quad 0 < p < \infty, \quad \|f\|_\infty = \sup |f(\phi)|.$
The factors $g_k^2(z)$ are obviously outer functions, and consequently

$$g_k^2(z) = e^{u_k(z) + i\tilde{u}_k(z)}, \quad z \in \mathbb{D},$$

where $u_k(z)$ is the Poisson integral of the function

$$u_k(\varphi) \equiv \log |g_k^2(z)| = -\log \left\{ \frac{1}{|z_k|} \left(1 + \frac{(1 - |z_k|^2)^2}{4|z_k|^2 \sin^2 \frac{\varphi \cdot \varphi_k}{2}} \right) \right\} < 0.$$

By the Cauchy theorem,

$$\frac{1}{2\pi i} \int_T \{u_k(\xi) + i\tilde{u_k}(\xi)\} \frac{d\xi}{\xi} = \log g_k^2(0) = -2 \log \frac{1}{|z_k|}.$$

But the left-hand side of (2.6) is equal to $\int_0^{2\pi} u_k(\varphi) \frac{d\varphi}{2\pi} = -\|u_k\|_1$ i.e. $\|u_k\|_1 = 2\log 1/|z_k|$. Consequently, the series $\sum_k u_k(\varphi)$ converges in L_1 to some integrable function $u(\varphi)$ and

$$G(z) = \exp \left\{ \sum_k u_k(z) + i\tilde{u_k}(\varphi) \right\} = \exp\{u(z) + i\tilde{u}(z)\}$$

is an outer function. In view of (2.5) we have $\|G\|_\infty < 1$. Q.E.D.

The utility of G is demonstrated by

Theorem 2. The following factorization

$$B(\xi) = \frac{G(\xi)}{|G(\xi)|}$$

holds a.e. on T, i.e.

$$\arg B(\varphi) = \nu(\varphi) = \tilde{u}(\varphi),$$

$$u(\varphi) = -\sum_k \log \left\{ \frac{1}{|z_k|} \left(1 + \frac{(1 - |z_k|^2)^2}{4|z_k|^2 \sin^2 \frac{\varphi \cdot \varphi_k}{2}} \right) \right\}.$$

Proof. It follows from

$$\log g_k^2(\varphi) = \log |g_k(\varphi)|^2 + 2i \arg g_k(\varphi) = u_k(\varphi) + i\tilde{u_k}(\varphi),$$

that

$$\tilde{u}_k(\varphi) = 2 \arg g_k(\varphi) = 2 \arg \frac{1 - e^{i(\varphi \cdot \varphi_k)}}{1 - |z_k|e^{i(\varphi \cdot \varphi_k)}} = 2 \arctan \left\{ \frac{1 - |z_k|}{1 + |z_k|} \cot \frac{\varphi \cdot \varphi_k}{2} \right\} = v_k(\varphi).$$
Hence, by M. Riesz's theorem about conjugate functions,

\[\left\| \tilde{u} - \sum_{k=1}^{n} u_k \right\|_p \leq C_p \left\| \sum_{k=n+1}^{\infty} u_k \right\|_1, \quad 0 < p < 1. \]

Thus, the series (2.2) converges in \(L_p \), \(0 < p < 1 \), to the function \(\tilde{u} \) and (2.8) is satisfied a.e. Next, according to a theorem by J. Walsh (see [2]), we have \(\ell^2 \cdot \prod_{k=1}^{n} b_k(\varphi) = B(\varphi) \) in the sense of convergence in \(L_2 \) where \(B(\varphi) = \lim_{r \to 1^-} B(re^{i\varphi}) \), from which (2.7) easily follows. Q.E.D.

Note that the possibility of factorization (2.7) with some \(G \in H^1 \) follows from the Adamjan-Arov-Krein theorem [3, 5].

Formula (2.8) plays an important role in the analysis of series (2.2).

3. Conditions for convergence of the argument

Theorem 3. (i) The series (2.2) converges in measure to a function \(\nu \), \(\nu \in \bigcap_{p<1} L_p \), and

\[\|\nu\|_p \leq C_p \sum_k \log \frac{1}{|z_k|}, \quad 0 < p < 1. \]

(ii) The series (2.2) converges a.e. to \(\nu \) and \(\nu \in L_1 \) if

\[\sum_k (1 - |z_k|) \log \frac{1}{1 - |z_k|} < \infty. \]

In this case

\[\|\nu\|_1 \leq C \sum_k (1 - |z_k|) + 2 \sum_k (1 - |z_k|) \log \frac{1}{1 - |z_k|}. \]

Proof. The statement (i) is already proved. The statement (ii) can be obtained by the direct calculation of \(\|\nu_k\|_1 \):

\[\|\nu_k\|_1 \leq (2 + \log 2\pi^2)(1 - |z_k|) + 2(1 - |z_k|) \log \frac{1}{1 - |z_k|} \]

Q.E.D.

Note that if condition (3.2) fails [6], it is possible to select \(\{\varphi_k\} \) so that the resulting series (2.2) diverges at every point of \(\mathbb{T} \).

The following statement can be obtained by the direct calculation of \(\|\nu_k\|_p \).

Theorem 4. The series (2.2) converges in \(L_p \), \(p > 1 \), if \(\sum_k (1 - |z_k|)^{1/p} < \infty \). In this case,

\[\|\nu\|_p \leq C_p \sum_k (1 - |z_k|)^{1/p}, \quad p > 1. \]

Theorem 5. Let \(\xi \in \mathbb{T} \) and let \(\Gamma_\theta(\xi) = \{z \in \mathbb{D} : |\xi - z| \cos \theta \leq 1 - |z|\} \) be the Stolz angle. If

\[\sup_{\xi \in \mathbb{T}} \text{card}\{z_k \in \Gamma_\theta(\xi)\} = N < \infty \]

for some \(0 < \theta < \pi/2 \), then \(\nu \in \bigcap_{p>0} L_p \).
Proof. Condition (3.3) means that the set \(\sigma \) can be decomposed into \(N \) subsequences such that each of them has at most one point in any angle \(\Gamma_\theta(\xi) \). These subsequences are interpolating [4]. Therefore it is sufficient to prove Theorem 5 in the case \(N = 1 \). Let us complete our set \(\sigma \) with points \(\{z'_k\} \) so that \(\text{card}\{z_k, z'_k \in \Gamma_\theta(\xi)\} = 1 \) (see Figure 1). Obviously it is sufficient to prove the statement for \(\sigma' = \sigma \cup \{z'_k\} \), which we simply denote again as \(\sigma(= \{z_k\}) \).

Let us represent the function \(u(\phi) = \sum_k u_k(\phi) \) in the form

\[
(3.4) \quad u(\phi) = u_{j_\phi}(\phi) + \sum_{k \neq j_\phi} u_k(\phi),
\]

where \(j_\phi \) is the index of the arc \(J_k \) for which \(\phi \in J_k \). We have

\[
u_{j_\phi}(\phi) = \log \left\{ \frac{1}{|z_k|} \left(1 + \frac{(1 - |z_{j_\phi}|)^2}{4|z_{j_\phi}| \sin^2 \frac{1}{4}(\phi - \phi_{j_\phi})} \right) \right\} \in L_p, \quad \forall p > 0.
\]

The sum in (3.4) can be estimated as follows:

\[
\sum_{k \neq j_\phi} u_k(\phi) \leq \sum_k \log \frac{1}{|z_k|} + \sum_{k \neq j_\phi} \frac{(1 - |z_k|)^2}{4|z_k| \sin^2 \frac{\phi - \phi_k}{2}}.
\]

Figure 1 shows that for \(\phi \notin J_k \), \((\phi - \phi_k)^2 \geq \frac{1}{4} J_k^2 = C_\theta(1 - |z_k|)^2 \), where \(C_\theta \simeq \tan^2 \theta \). That is why (for the sufficient choice of the constant \(C \), which depends on \(\theta \) only)

\[
4|z_k| \sin^2 \frac{\phi - \phi_k}{2} \geq \frac{1}{C} \left(4|z_k| \sin^2 \frac{\phi - \phi_k}{2} + (1 - |z_k|)^2 \right).
\]
Hence

\[(3.5) \quad \sum_{k \neq \phi} u_k(\phi) \leq \sum_k \log \frac{1}{|z_k|} + C \sum_{k \neq \phi} (1 - |z_k|) P_z(\phi),\]

where \(P_z(\phi) = \frac{1 - |z|^2}{1 - \bar{z}e^{\phi}}\) is the Poisson kernel. Now it is sufficient to note that

\[(3.6) \quad \sum_{k \neq \phi} (1 - |z_k|) P_z(\phi) \leq \sum_k (1 - |z_k|) P_z(\phi) \]

\[= \int_{\mathbb{D}} P_z(\phi) d\mu(z),\]

where \(\mu\) is the measure on \(\mathbb{D}\) given by \(\mu(\Omega) = \sum_{z_k \in \Omega} (1 - |z_k|)\). Since \(\{z_k\}\) is an interpolating sequence, the measure \(\mu\) is of Carleson type [3, 5]. So [3] the integral in (3.6) determines a function in \(\text{BMO} \subseteq \text{L}_p\). That is why the right-hand side of (3.5) also belongs to \(\bigcap_{p>0} L_p\). The theorem is proved, because \(\nu = \hat{u}\).

Let us represent one more statement which, in fact, is the Frostman’s theorem [1].

Theorem 6. The series (2.2) converges absolutely and uniformly to a function \(\nu \in \text{L}_\infty\) iff the Frostman condition,

\[\sup_{\xi \in \mathbb{T}} \sum_k \frac{1 - |z_k|}{|1 - \bar{z}_k \xi|} < \infty,\]

is satisfied.

Proof. Since \(|\arg g_k| \leq \frac{\pi}{2}\), we have

\[|\nu_k(\phi)| = 2|\arg g_k(\phi)| \leq \pi \sin|\arg g_k(\phi)|\]

\[= \frac{1 - |z_k|}{|1 - \bar{z}_k \xi|} \pi \cos \frac{\phi - \phi_k}{2} \leq \frac{1 - |z_k|}{|1 - \bar{z}_k \xi|}.\]

Now for the converse. Obviously, the behavior of the function \(\nu\) near the point \(\phi\) is determined only by those points \(z_k \in \sigma\), for which \(\cos \frac{\phi - \phi_k}{2} \geq C > 0\). Then for such a \(\phi\)

\[|\nu_k(\phi)| \geq 2 \sin|\arg g_k(\phi)| = \frac{2(1 - |z_k|)}{|1 - \bar{z}_k \xi|} \cos \frac{\phi - \phi_k}{2}\]

\[\geq 2C \frac{1 - |z_k|}{|1 - \bar{z}_k \xi|}. \quad \text{Q.E.D.}\]

4. Converse statements

Theorem 5 shows that condition (3.2) does not follow from the summability of \(\arg B\) because the assumptions of Theorem 5 pose no other restriction on \(|z_k|\) except for the Blaschke condition (1.2) (the lemma of Naftalevich [7]). However, the following theorem then holds.
Theorem 1. If $\nu = \arg B \in L_1$, then $\forall \Gamma_\theta(\xi)$

$$\sum_{z_k \in \Gamma_\theta(\xi)} (1 - |z_k|) \log \frac{1}{1 - |z_k|} < \infty.$$

Proof. From the obvious chain of inequalities,

$$\text{Re} \frac{1 - |z_k|}{1 - z_k e^{i\varphi}} = (1 - |z_k|) \left(\frac{1 - |z_k|}{1 + |z_k|} \right) e^{\nu_k(\varphi)}$$

$$= 1 - |z_k| \left(1 - \frac{1 - |z_k|}{2} \right) e^{\nu_k(\varphi)}$$

$$\leq 1 - \frac{1}{2} \left(\frac{1 - |z_k|}{2} \right) (1 + \nu_k(\varphi))$$

$$\leq 1 - \frac{1}{2} (1 + |z_k|) \nu_k(\varphi),$$

we can conclude that the sum of rational fractions,

$$F(z) = \sum_k \frac{1 - |z_k|}{1 - \overline{z}_k z},$$

belongs to the space H^1 together with $\log G(z)$.

We use the duality of the spaces H^1 and BMO (see [3, 5]), which provides that for every function $f \in \text{BMO A} = \text{BMO} \cap H^2$ and $F \in H^1$, there exists a finite limit

$$\lim_{r \to 1} \frac{1}{2\pi i} \int_0^{2\pi} f(e^{i\varphi}) \overline{F(re^{i\varphi})} d\varphi,$$

which determines a linear continuous functional on H^1. For our function (4.2) this limit is equal to

$$\lim_{r \to 1} \frac{1}{2\pi} \int_\pi \sum_k \frac{1 - |z_k|}{\xi - rz_k} f(\xi) d\xi = \sum_k (1 - |z_k|) f(z_k).$$

That is, for every $f \in \text{BMO A}$,

$$\left| \sum_k (1 - |z_k|) f(z_k) \right| < \infty.$$

Because $\nu \in L_1$, $\nu = \delta u, u \in L_1, u < 0$, every term of the series ν also belongs to L_1 (the direct consequence of Zygmund’s theorem about the $L \log L$ class [3, 5]). That is why inequality (3.4) is valid for every subsequence $\sigma \cap \Gamma_\theta(\xi)$. Let us take $f(z) = \log \frac{2}{\xi - z} \in \text{BMO A}$. Then (4.3) leads to the inequality

$$\sum_{z_k \in \Gamma_\theta(\xi)} (1 - |z_k|) \log \left| \frac{2}{\xi - z_k} \right| < \infty,$$

which is equivalent to the original one in the Stolz angle. Q.E.D.
Remark. Duality allows us also to obtain uniformly the necessary condition for \(\arg B \in L_1 \):

\[
\sup_{\zeta \in \Gamma} \sum_k (1 - |z_k|) \log \left| \frac{2}{1 - \overline{z_k} \zeta} \right| < \infty.
\]

Now we obtain the converse statement to Theorem 4. As in the previous theorem, using the duality \(H^p - H^q \), \(\frac{1}{p} + \frac{1}{q} = 1 \) and the test function \((e > 0) \)

\[
f(z) = (\xi - z)^{-1/q} \left(\log \frac{2}{\xi - z} \right)^{-(1+e)/q} \in H^q \quad (\xi \in H^q', \quad q' > q),
\]

one can prove the following

Theorem 8. If \(\arg B \in L_p \), \(p > 1 \), then \(\forall \Gamma_{\theta}(\xi) \),

\[
\sum_{z_k \in \Gamma_{\theta}(\xi)} (1 - |z_k|)^{1/p} \left(\frac{1}{1 - |z_k|} \right)^{-(1+e)/q} < \infty, \quad q = \frac{p}{p - 1}.
\]

Remark 1. One can see that in Theorems 7 and 8, the Stolz angle \(\Gamma_{\theta}(\xi) \) can be replaced by the orocycle

\[
C_{\alpha}(\xi) \equiv \{ z \in \mathbb{D} : |\xi - z|^2 < \alpha(1 - |z|^2), \quad \alpha > 0 \}
\]

as well as by any domain of the form

\[
C_{\alpha}^\gamma(\xi) \equiv \{ z \in \mathbb{D} : |\xi - z|^\gamma < \alpha(1 - |z|), \quad \gamma > 1 \}.
\]

Remark 2. If \(\exists \theta \) such that \(\sigma \in \bigcup_{k=1}^N \Gamma_{\theta}(\xi_k) \), \(N < \infty \), then Theorems 7 and 8 are valid for all \(\sigma \). However, for \(N = \infty \) this is obviously not true (a counterexample is provided by Theorem 5).

Acknowledgments

The author would like to thank B. S. Pavlov and S. V. Hruščev for helpful discussions and for reading the manuscript.

References

Department of Mathematics, Leningrad Institute of Fine Mechanics and Optics, Leningrad, USSR