Convolution equations in certain Banach spaces
Author:
Alexander L. Koldobskii
Journal:
Proc. Amer. Math. Soc. 111 (1991), 755-765
MSC:
Primary 46F25; Secondary 46G12, 47B38
DOI:
https://doi.org/10.1090/S0002-9939-1991-1034886-1
MathSciNet review:
1034886
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: For a Banach space and
, the following problem is considered: how to identify a finite Borel measure
on
by means of the potential
. The solution for infinite-dimensional Hilbert spaces is based on limit correlations between the Fourier transforms of finite-dimensional restrictions of
and
. For finite-dimensional subspaces of
, the Levy representation of norms is used.
- [1] A. L. Al-Husaini, Potential operators and equimeasurability, Pacific J. Math. 76 (1978), 1-7. MR 0478368 (57:17851)
- [2]
J. Bretagnolle, D. Dacunha-Castelle, and J. L. Krivine, Lois stables et espaces
, Ann. Inst. H. Poincaré (B) 2 (1966), 231-259. MR 0203757 (34:3605)
- [3] I. M. Gelfand and G. E. Shilov, Generalized functions and operations over them, Generalized Functions 1, Glav. Izdat. Fiz. Mat. Lit., Moscow, 1959. (Russian)
- [4] I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Integral geometry and connected topics of representation theory, Generalized Functions 5, Glav. Izdat. Fiz. Mat. Lit., Moscow, 1962. (Russian)
- [5] E. A. Gorin and A. L. Koldobskii, On potentials, identifying measures in Banach spaces, Dokl. Acad. Nauk SSSR 285 (1985), 270-273; English transl. in Soviet Math. Dokl. 32 (1985), 659-663. MR 820848 (87f:31005)
- [6] -, On potentials of measures in Banach spaces, Sibirskii Mat. J. 28 (1987), 65-80. MR 886854 (88g:60017)
- [7]
C. D. Hardin, Isometries on subspaces of
, Indiana Univ. Math. J. 30 (1981), 449-465. MR 611233 (83i:47041)
- [8]
M. Kanter, The
-norm of sums of translates of a function, Trans. Amer. Math. Soc. 179 (1973), 35-47. MR 0361617 (50:14062)
- [9]
A. L. Koldobskii, On isometric operators in
, Functional Analysis (A. V. Strauss, ed.) Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk 12 (1979), 90-99. (Russian) MR 558345 (81i:43004)
- [10]
-, On isometric operators in vector-valued
-spaces, Zap. Naucn. Sem. Leningr. Otd. Mat. Inst. Steklov (LOMI) 107 (1982), 198-203. (Russian) MR 676160 (84a:47037)
- [11]
-, Uniqueness theorem for measures in
and its application in the theory of random processes, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov (LOMI) 119 (1982), 144-153; English transl, in J. Soviet Math. 27 (1984), 3095-3102. MR 666092 (84h:60069)
- [12]
-, Convolution metrics on spaces of measures and
-isometries, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov (LOMI) 157 (1987), 151-156. (Russian)
- [13] N. S. Landkof, Foundations of modern potential theory, Nauka, Moscow, 1966; English transl. Springer-Verlag, 1972. MR 0350027 (50:2520)
- [14] W. Linde, Moments of measures on Banach spaces, Math. Ann. 258 (1982), 277-287. MR 649200 (83f:60010)
- [15] -, On Rudin's equimeasurability theorem for infinite dimensional Hilbert spaces, Indiana Univ. Math. J. 35 (1986), 235-243. MR 833392 (87i:46099)
- [16]
-, Uniqueness theorems for measures in
and
, Math. Ann. 274 (1986), 617-626.
- [17]
W. Lusky, Some consequences of Rudin's paper "
-isometries and equimeasurability," Indiana Univ. Math. J. 27 (1978), 859-866. MR 503719 (81h:46028)
- [18]
A. Neyman, Representation of
-norms and isometric embedding in
-spaces, Israel J. Math. 48 (1984), 129-138. MR 770695 (86g:46033)
- [19]
A. I. Plotkin, Continuation of
-isometries, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov (LOMI) 22 (1971), 103-129. MR 0300120 (45:9168)
- [20]
-, An algebra, generated by translation operators, and
-norms, Functional Analysis, (A. V. Strauss, ed.), Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk 6 (1976), 112-121.
- [21]
W. Rudin,
-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228. MR 0410355 (53:14105)
- [22] K. Stephenson, Certain integral equalities, which imply equimeasurability of functions, Canad. J. Math. 29 (1977), 827-844. MR 0467323 (57:7182)
- [23] V. M. Zolotarev, One-dimensional stable distributions, Nauka, Moscow, 1983. (Russian) MR 721815 (85k:60002)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F25, 46G12, 47B38
Retrieve articles in all journals with MSC: 46F25, 46G12, 47B38
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1991-1034886-1
Article copyright:
© Copyright 1991
American Mathematical Society