Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Algebras of invariant functions on the Šilov boundary of generalized half-planes


Author: Giovanna Carcano
Journal: Proc. Amer. Math. Soc. 111 (1991), 743-753
MSC: Primary 22E30; Secondary 32M15, 43A20
MathSciNet review: 1039253
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{N}$ be the nilpotent Lie group identified to the Šilov boundary of a symmetric generalized half-plane $ \mathcal{D}$ and $ L$ a compact group acting on $ \mathcal{N}$ by automorphisms, arising from the realization of $ \mathcal{D}$ as hermitian symmetric space. Is then $ (L \ltimes \mathcal{N},L)$ a Gelfand pair? We study the problem and resolve it in the case of classical families.


References [Enhancements On Off] (What's this?)

  • [1] C. Benson, J. Jenkins, and G. Ratcliff, On Gelfand pairs associated with nilpotent Lie groups, preprint.
  • [2] Giovanna Carcano, A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 4, 1091–1105 (English, with Italian summary). MR 923441
  • [3] -, Hermitian symmetric spaces and Siegel domains, Boll. Un. Mat. It. (to appear).
  • [4] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • [5] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in 𝐶ⁿ, Invent. Math. 62 (1980/81), no. 2, 325–331. MR 595591, 10.1007/BF01389163
  • [6] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 416–435. MR 729367, 10.1007/BFb0069172
  • [7] A. Korányi, Some applications of Gelfand pairs in classical analysis, C.I.M.E.-Summer School on Harmonic Analysis and Group Representation, Liquori, Napoli, 1982, pp. 335-348.
  • [8] Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288. MR 0174787
  • [9] R. D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory of Siegel domains of type 𝐼𝐼, Adv. in Math. 33 (1979), no. 1, 31–92. MR 540636, 10.1016/S0001-8708(79)80009-2
  • [10] Ichirô Satake, Algebraic structures of symmetric domains, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. MR 591460
  • [11] Stephen Vági, On the boundary values of holomorphic functions, Rev. Un. Mat. Argentina 25 (1970/71), 123–136. Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday. MR 0318797
  • [12] Edoardo Vesentini, Holomorphic almost periodic functions and positive-definite functions on Siegel domains, Ann. Mat. Pura Appl. (4) 102 (1975), 177–202. MR 0370066

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E30, 32M15, 43A20

Retrieve articles in all journals with MSC: 22E30, 32M15, 43A20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-1039253-2
Article copyright: © Copyright 1991 American Mathematical Society