Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generic Torelli-type theorem for singular algebraic curves with an involution


Author: Miroslav Tsanov Jotov
Journal: Proc. Amer. Math. Soc. 111 (1991), 625-632
MSC: Primary 14C34; Secondary 14C30, 14H15
DOI: https://doi.org/10.1090/S0002-9939-1991-1045140-6
MathSciNet review: 1045140
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a generic Torelli-type theorem for a special class of singular algebraic curves with an involution. In order to obtain this result we introduce an appropriate mixed Hodge structure on the anti-invariant part of the first homology group, and study its properties.


References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of algebraic curves, vol.1, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
  • [2] J. Carlson, Extensions of mixed Hodge structures, Journées de Géomátrie Algébrique d'Angers 1979, Sijthhoff and Noordhoff, 1980, pp. 107-128. MR 605338 (82g:14013)
  • [3] C. Clemens, A scrapbook of complex curve theory, Plenum Press, 1980. MR 614289 (82i:14001)
  • [4] R. Friedman and R. Smith, The generic Torelli theorem for the Prym map, Invent. Math. 67 (1982), 473-490. MR 664116 (83i:14017)
  • [5] V. Kanev, The global generic Torelli theorem for Prym varieties, Izvestia Acad. Nauk USSR, 46 (1982), 244-268. MR 651647 (83h:14022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14C34, 14C30, 14H15

Retrieve articles in all journals with MSC: 14C34, 14C30, 14H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1045140-6
Keywords: Mixed Hodge structure, Prym variety, $ 1$-motive map, root system
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society