A GENERIC TORELLI-TYPE THEOREM FOR SINGULAR ALGEBRAIC CURVES WITH AN INVOLUTION

MIROSLAV TSANOV JOTOV

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. We prove a generic Torelli-type theorem for a special class of singular algebraic curves with an involution. In order to obtain this result we introduce an appropriate mixed Hodge structure on the anti-invariant part of the first homology group, and study its properties.

Let \(X \) be an irreducible projective algebraic curve with an involution \(\sigma \). Suppose \(X \) has only ordinary singularities and let \(\Sigma \) be its singular locus. Let \(\pi: N \to X \) be the normalization of \(X \) and let \(\tau: N \to N \) be the involution induced by \(\sigma \). We suppose that the following condition is satisfied:

\[
(*) \quad \text{The set of fixed points of } \sigma \text{ coincides with } \Sigma \text{ and the involution } \tau \text{ is without fixed points.}
\]

Following J. Carlson [2] one can introduce a polarized mixed Hodge structure (PMHS) on the anti-invariant part of \(H_1(X, \mathbb{Z}) \) with respect to \(\sigma \), denoted by \(H_1^-(X, \mathbb{Z}) \):

\[
0 \to H_1^-(N, \mathbb{Z}) \to H_1^-(X, \mathbb{Z}) \to A \to 0,
\]

where \(H_1^-(N, \mathbb{Z}) \) is the anti-invariant part of \(H_1(N, \mathbb{Z}) \) with respect to \(\tau \) and has a polarized Hodge structure (PHS) of weight \(-1\); \(A \) has PHS of weight \(0\).

It turns out that the latter is isomorphic to the lattice generated by a root-system of the type \(D_n \) when \(\#(\pi^{-1}(\Sigma)) > 2 \).

Using the generic Torelli theorem for the Prym map as proven by Friedman-Smith [4] and Kanev [5], the pair \((N, \tau)\) is uniquely determined by its Prym variety (equivalently by the PHS of \(H_1^-(N, \mathbb{Z}) \)) if the following condition is satisfied.

\(N/\tau \) is a sufficiently general curve of genus \(g \geq 7 \).

We prove the following result:

Theorem 7. Let \(X \) be the curve which satisfies (\(*\)). Suppose that \(N/\tau \) is a general curve of genus \(g \geq 15 \). Then \(N, \tau, \) and the set \(\pi^{-1}(\Sigma) \) are uniquely determined by the PMHS of \(H_1^-(X, \mathbb{Z}) \).

Received by the editors October 1, 1989 and, in revised form, March 29, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 14C30; Secondary 14H99.

Key words and phrases. Mixed Hodge structure, Prym variety, 1-motive map, root system.
As a consequence we obtain

Theorem 8. If \(X \) satisfies the conditions of Theorem 7 and has only one singular point then \(X \) and \(\sigma \) are uniquely determined by the PMHS of \(H_1^-(X, \mathbb{Z}) \).

1. **Preliminaries**

Let \(X \) be an irreducible projective curve with ordinary singularities, and \(n: N \to X \) be its normalization for which

(i) there exist involutions \(\tau: N \to N \) and \(\sigma: X \to X \), such that \(\tau \) has no fixed points and the fixed points of \(\sigma \) are the singularities of \(X \);

(ii) \(\pi \circ \tau = \sigma \circ \tau \).

Such curves can be constructed as follows:

(i) we fix \((N, \tau) \) to be a smooth irreducible projective algebraic curve with an involution without fixed points;

(ii) we choose a finite subset \(\Omega \subset N \) such that \(\Omega = \bigcup_{i=1}^{k} \Omega_i \), and for each \(i \), \(\tau(\Omega_i) = \Omega_i \) and \(\Omega_i \cap \Omega_j = \emptyset \) if \(i \neq j \);

(iii) we define \(X = N/\rho \), provided with the factor-topology and the induced involution \(\sigma \), where by definition for each \(a, b \in N \)

\[\{a \rho b\} \text{ iff } \{\text{either } a = b \text{ or } a, b \in \Omega_i \text{ for some } i\}. \]

The condition that \(X \) has only ordinary singularities uniquely determines \(X \) as an algebraic curve.

Obviously \(M = N/\tau \) is a smooth projective algebraic curve and the induced morphism \(\psi: M \to Y = X/\sigma \) is a normalization. Furthermore \(Y \) has at worst ordinary singularities.

Let \(\phi: N \to M \) and \(\lambda: X \to Y \) be the corresponding factor-morphisms.

2. **Definition and properties of the main exact sequence**

J. Carlson [2] constructed the following exact sequence for \(\pi: N \to X \).

\[0 \to H_1(N, \mathbb{Z}) \xrightarrow{\pi^*} H_1(X, \mathbb{Z}) \xrightarrow{\partial} \zeta_x \to 0, \]

where \(\partial \) is a boundary operator, \(\zeta_x \subset \text{Div}^0 N \) is a finitely-generated group, which by means of the natural polarization on \(\text{Div} N \) (for which the points of \(N \) form an orthonormal base) has a representation as an orthogonal sum:

\[\zeta_x = \bigoplus_{i=1}^{k} \zeta(y_i), \]

where \(y_i = \pi(\Omega_i) \). Furthermore \(\zeta(y_i) \) is spanned by a root-system of type \(A_{r(i)} \), where \(r(i) = \#(\Omega_i) - 1 \). The morphisms \(\sigma \) and \(\tau \) act on (1). Since \(\pi \circ \tau = \sigma \circ \pi \) for the anti-invariant part of the corresponding members of (1) we have:

\[H_1^-(N, \mathbb{Z}) \xrightarrow{\pi^*} H_1^-(X, \mathbb{Z}) \xrightarrow{\partial} \zeta_x^- \to 0, \]

Since \(\tau(\Omega_i) = \Omega_i \) and \(\tau \) has no fixed points we have

\[\zeta_x^- = \bigoplus_{i=1}^{k} \zeta^-(y_i) = \bigoplus_{i=1}^{l} \mathbb{Z}(x_i - \tau(x_i)), \]

which is an orthogonal sum. Here \(2s = \#(\Omega) \) and \(\Omega = \{x_1, \ldots, x_s, \tau(x_1), \ldots, \tau(x_s)\} \). Hence the nonzero elements of \(\zeta_x^- \) with min-
imal length are
\[\{ \pm(x_1 - \tau(x_1)|x_1 \in \Omega, \ i = 1, 2, \ldots, s}. \]

Let \(A = \partial(H_1^- (X, \mathbb{Z})). \)

Lemma 1. (i) If \(\#(\Omega) = 2, \) then \(A \cong \mathbb{Z}, \) a and \((a, a) = 8; \)
(ii) If \(\#(\Omega) \geq 4 \) and \(R = \{ a \in \zeta_x| (a, a) = 4 \}, \) then \(R \) is a root-system of type \(D_s \) (\(2s = \#(\Omega) \)) and \(R \) generates \(A. \)

Proof. (a) We claim that there is no element \(b \in \zeta_x^- \) for which \((b, b) = 2 \) and \(b \in A. \) Indeed if there exists such an element then \(b = x - \tau(x) \in A \) with \(x \in \Omega, \) hence there exists \(c \in C_1(N) \) for which \(\partial(c) = x - \tau(x) \) and \(\pi_*(c) \in H_1^- (X, \mathbb{Z}). \) Furthermore \(c + \tau(c) \) is a cycle in \(H_1(N, \mathbb{Z}), \) and \(\pi_*(c) \in H_1^- (X, \mathbb{Z}) \) implies that \(\pi_*(c + \tau(c)) = 0 \) in \(H_1(X, \mathbb{Z}). \) Since \(H_1(N, \mathbb{Z}) \to H_1(X, \mathbb{Z}) \) is injective, it follows that \(c + \tau(c) \) is homologous to \(0 \) in \(H_1(N, \mathbb{Z}). \)

Now consider \(\phi: N \to M. \) Since \(M = N/\tau, \) it follows that \(\phi_*(c + \tau(c)) = 2\phi_*(c) \) is homologous to \(0 \) in \(H_1(M, \mathbb{Z}). \) Since \(H_1(M, \mathbb{Z}) \) is torsion-free, \(\phi_*(c) \) is also homologous to \(0. \) Thus, as a loop in \(\pi_1(M), \) \(\phi_*(c) \) is in the commutator subgroup. Since \(\pi_1(N) \subset \pi_1(M) \) is a normal subgroup of index \(2, \) \(\pi_1(N) \) contains the commutator subgroup. Thus \(\phi_*(c) \) lies in the image of \(\pi_1(N), \) which means that \(\phi_*(c) \) lifts to a closed loop in \(N. \) This contradicts \(\partial(c) = x - \tau(x). \)

(b) We claim that if \(x, y \in \Omega, \) then \(a = x - \tau(x) \pm (y - \tau(y)) \) is an element of \(A. \) It is sufficient to prove the statement for \(a = x - \tau(x) + y - \tau(y) \) since \(x - \tau(x) - (y - \tau(y)) = x - \tau(x) + (y - \tau(y)) \) \(\partial(c) = x - \tau(y) \). Then \(\partial(c - \tau(c)) = x - \tau(x) + y - \tau(y). \)

We complete the proof of Lemma 1 as follows:

Case (i). By (a) and (b) \(A \) is generated by \(a = 2(x - y), \) where \(\{x, y\} = \Omega. \)

Case (ii). Put \(e_i = x_i - \tau(x_i), \) where \(\Omega = \{x_1, \ldots, x_s, \tau(x_1), \ldots, \tau(x_s)\}. \) Then \(R = \{e_i \pm e_j|i \neq j\}, \) so \(R \) is a root-system of type \(D_s. \) Since \(R = \{e_i \pm e_j\}, \) it follows that \(R \) spans a sublattice \(R' \) of index \(2 \) in \(\bigoplus_{i=1}^s \mathbb{Z}e_i. \) Then (b) implies \(R' \subset A, \) so that \(R' = A \) or \(A = \bigoplus_{i=1}^s \mathbb{Z}e_i. \) By (a), the latter cannot happen, which proves that \(R \) generates \(A. \) Q.E.D.

Lemma 2. The sequence
\[0 \to H_1^-(N, \mathbb{Z}) \xrightarrow{\pi_*} H_1^-(X, \mathbb{Z}) \xrightarrow{\partial} A \to 0 \]
is exact.

Proof. The exactness at the first member of (2) is derived from the exactness of the first member of (1); the exactness in the third member of (2) is derived from the definition of \(A. \) It remains to prove that \(\text{Ker} \partial = \text{Im} \pi_* \). Obviously \(\text{Ker} \partial \supset \text{Im} \pi_* \). Let \(a \in H_1^-(X, \mathbb{Z}) \) and \(\partial(a) = 0, \) hence there exists \(b \in H_1(N, \mathbb{Z}) \) such that \(\pi_*(b) = a, \) since (1) is exact. We have
\[0 = a\pi_*(a) = \pi_*(b) + \sigma_*\pi_*(b) = \pi_*(b + \tau(b)), \]
hence \(b + \tau(b) = 0 \), since \(\pi_* \) is an injection. Hence \(b \in H^1_{\ast}(N, \mathbb{Z}) \) and \(\pi_*(b) = a \), i.e., \(\text{Ker} \, \partial \subset \text{Im} \, \pi_* \). Q.E.D.

3. Construction of PMHS for \(H^1_{\ast}(X, \mathbb{Z}) \)

From the Poincaré duality we get an exact sequence:

\[0 \to \hat{\mathcal{A}} \overset{\delta}{\to} H^1_{\ast}(X, \mathbb{Z}) \overset{\pi_*}{\to} H^1_{\ast}(N, \mathbb{Z}) \to 0, \]

where \(\hat{\mathcal{A}} = \text{Hom}_\mathbb{Z}(\mathcal{A}, \mathbb{Z}) \).

Following J. Carlson [2] we define a mixed Hodge structure on \(H^1_{\ast}(X, \mathbb{Z}) \):

(a) Weight filtration on \(H^1_{\ast}(X, \mathbb{Z}) \):

\[W_{-1} = 0, \quad W_0 = \text{Im} \, \delta, \quad W_1 = H^1_{\ast}(X, \mathbb{Z}); \]

define polarizations on \(W_0 \) and \(W_1/W_0 \) via the polarizations on \(\mathcal{A} \) and on \(H^1_{\ast}(N, \mathbb{Z}) \) introduced above.

(b) Hodge filtration on \(H^1_{\ast}(X, \mathbb{C}) = H^1_{\ast}(X, \mathbb{Z}) \otimes \mathbb{C} \):

\[F^0 = H^1_{\ast}(X, \mathbb{C}); \]
\[F^1 = \left\{ \omega \in H^0(X - \Sigma, \Omega^1(X - \Sigma)) \mid \int_{X - \Sigma} \omega \wedge \overline{\omega} < \infty, \sigma^* \omega + \omega = 0 \right\}, \]

here \(\Sigma \) is the singular locus of \(X \).

\[F^2 = 0. \]

Lemma 3. The map \(\pi^* \) gives an isomorphism

\[F^1 \cong H^0_{\ast}(N, \Omega^1_N). \]

It follows from Lemma 3 that \(F^1 \cap W_0 = 0, \quad W_1/W_0 \otimes \mathbb{C} \cong F^1 \oplus F^1 \) which means that we have MHS on \(H^1_{\ast}(X, \mathbb{Z}) \), \(W_0 \) has PHS of pure weight 0, and \(W_1/W_0 \) has PHS of pure weight 1 (cf. [2]).

Proof. Let \(\alpha \in F^1 \). Then \(\pi^*(\alpha) \in H^0(N - \Omega, \Omega^1(N - \Omega)) \). Since

\[\int_{N - \Omega} \pi^* \alpha \wedge \overline{\pi^* \alpha} = \int_{X - \Sigma} \alpha \wedge \overline{\alpha} < \infty, \]

then \(\pi^* \alpha \in H^0(N, \Omega^1_N) \). We have \(\pi^* \alpha + \tau^* \circ \pi^* \alpha = \pi^* (\alpha + \sigma^* \alpha) = 0 \) on \(N - \Omega \). The 1-form \(\pi^* \alpha \) is holomorphic, so \(\pi^* \alpha + \tau^* \circ \pi^* \alpha = 0 \) on \(N \). Thus we have a linear map \(\pi^*: F^1 \to H^0_{\ast}(N, \Omega^1_N) \). The inverse of this map is obviously defined since \(N \) and \(X \) are birationally isomorphic. Q.E.D.

Proposition 4. The group \(H^1_{\ast}(X, \mathbb{Z}) \) has a polarized mixed Hodge structure for which:

(i) \(W_0 H^1_{\ast}(X) = H^1_{\ast}(X, \mathbb{Z}), \quad W_{-1} H^1_{\ast}(X) = \text{Im} \, \pi_* = H^1_{\ast}(N, \mathbb{Z}), \quad W_{-2} H^1_{\ast}(X) = 0; \)
(ii) $F^1 H^1_-(X) = 0$, $F^0 H^1_-(X) = \text{ann}_R(F^1 H^1_-(X)) \cong \overline{F^1 H^1_-(X)} \oplus (A \otimes \mathbb{C})$, $F^{-1} H^1_-(X) = H^1_-(X, \mathbb{C})$, here $F^1 H^1_-(X)^* = \text{Hom}_R(F^1 H^1_-(X), \mathbb{R})$ and the complex conjugation in $H^1_-(X, \mathbb{C})$ is induced by those in \mathbb{C} through $H^1_-(X, \mathbb{C}) = H^1_-(X, \mathbb{Z}) \otimes \mathbb{C}$;

(iii) $\text{Gr}^w_{-1} = W_{-1} / W_{-2}$ has a pure weight -1, the polarization of $H^1_-(N, \mathbb{Z})$ is transferred to Gr^w_{-1} through π_*. $\text{Gr}^w_{0} = W_{0} / W_{-1}$ has a pure weight 0 and the polarization of A is transferred to Gr^w_{0} through ∂.

Proof. This is an immediate consequence of Lemma 3 and the definition of MHS on a dual group (cf. [2]). Q.E.D.

It follows that the Hodge structure on $\text{Gr}^w_{-1} = W_{-1} H^1_-(X)$ is:

$$F^{-1} W_{-1} H^1_-(X) = F^{-1} H^1_-(X) \cap [W_{-1} H^1_-(X) \otimes \mathbb{Z} \mathbb{C}] = F^1 H^1_-(X)^* \oplus \overline{F^1 H^1_-(X)^*} = W_{-1} H^1_-(X);$$

$$F^0 W_{-1} H^1_-(X) = F^0 H^1_-(X) \cap [W_{-1} H^1_-(X) \otimes \mathbb{Z} \mathbb{C}] = \overline{F^1 H^1_-(X)^*};$$

$$F^1 W_{-1} H^1_-(X) = 0.$$

4. Geometric description of the 1-motive map

By definition we have

$$L^0 H^1_-(X) = [\text{Gr}^w_{0} H^1_-(X) \otimes \mathbb{Z} \mathbb{C}] \cap [\text{Gr}^w_{0} H^1_-(X)]_Z, \quad J^0 W_{-1} H^1_-(X) = [W_{-1} H^1_-(X) \otimes \mathbb{Z} \mathbb{C}] / [W_{-1} H^1_-(X) + F^0 W_{-1} H^1_-(X)].$$

It is clear from Proposition 4 and from the sequence (2) that $H^1_-(X, \mathbb{Z})$ is an extension of Gr^w_{0} by Gr^w_{-1}. For extensions of this type J. Carlson [2] has constructed a map 1-motive:

$$u: L^0 H^1_-(X) \to J^0 W_{-1} H^1_-(X),$$

which depends only on the mixed Hodge structure of $H^1_-(X, \mathbb{Z})$ and is given as follows:

(i) Let $\{\omega_i\}$ be a basis of Gr^w_{-1} and $\{\omega^i\}$ be the dual basis in $\left(\text{Gr}^w_{-1}\right)^*$;

(ii) Let $\{\Omega^i\} \subset H^1_-(X, \mathbb{Z})$, for which $\pi^*(\Omega^i) = \omega^i$ for each i;

(iii) If $\gamma \in \text{Gr}^w_{0}$ and $\Gamma \in H^1_-(X, \mathbb{Z})$ is such that $\partial(\Gamma) = \gamma$, then $\gamma \leadsto [\Sigma_i \langle \Omega^i, \Gamma \rangle \omega_i]$, where \langle , \rangle is the canonical pairing between $H^1_-(X, \mathbb{Z})$ and $H^1_-(X, \mathbb{Z})$; and $[\alpha]$ is the class of α in $J^0 W_{-1} H^1_-(X)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let us recall that for \((N, \tau)\) a Prym variety \(P(N, \tau) = H^{1,0}_{-1}(N)^*/H^1_{-1}(N, \mathbb{Z})\) is defined and a map \(PA: \text{Div}^0(N) \to P(N, \tau)\), where

\[
P A(P - Q) = \left(\int_Q \phi_1, \ldots, \int_Q \phi_{g-1} \right) \pmod{H^1_{-1}(N, \mathbb{Z})}.
\]

Here \(\{\phi_1, \ldots, \phi_{g-1}\}\) is a basis of \(H^{1,0}_{-1}(N)\) and \(H^1_{-1}(N, \mathbb{Z})\) is injected into \(H^{1,0}_{-1}(N)^*\) by integration. \(PA\) is called the Abel–Prym’s map.

Proposition 5. The following diagram is commutative

\[
\begin{array}{ccc}
L^0H^1_{-1}(X) & \xrightarrow{\nu} & J^0W_{-1}H^1_{-1}(X) \\
\partial_1 \cong & A & \xrightarrow{\mu} P(N, \tau)
\end{array}
\]

where \(\nu\) is given by the identification of \(W_{-1}H^1_{-1}(X)\) with \(H^1_{-1}(N, \mathbb{Z})\) and by using the duality given by integration; \(\mu\) is the Abel–Prym’s map, restricted on \(A \subset \text{Div}^0 N\).

Proof. Obviously \(L^0H^1_{-1}(X) = \text{Gr}_W H^1_{-1}(X)\) which is isomorphic to \(A\) through \(\partial\) (cf. Proposition 4).

\[
J^0W_{-1}H^1_{-1}(X) = \frac{W_{-1}H^1_{-1}(X) \otimes \mathbb{C}}{W_{-1}H^1_{-1}(X) + F^0W_{-1}H^1_{-1}(X)} = \frac{F^1H^1_{-1}(X)^* \oplus F^1H^1_{-1}(X)^*}{W_{-1}H^1_{-1}(X) + F^0W_{-1}H^1_{-1}(X)}
\]

\[
\cong \frac{F^1H^1_{-1}(X)^*}{W_{-1}H^1_{-1}(X)} \cong \frac{H^{1,0}_{-1}(X)^*}{H^1_{-1}(N, \mathbb{Z})} \cong P(N, \tau).
\]

To calculate \(\mu\) we introduce the well-known symplectic base of \(H_1(N, \mathbb{Z})\):

\[
\{a_1, b_2; a_{g+1}, b_{g+1}; \ldots; a_{g-1}, b_{g-1}; a_{2g-1}, b_{2g-1}; a_g, b_g\}
\]

for which

\[
\tau_*(a_i) = a_{i+g}, \quad \tau_*(b_i) = b_{i+g} \quad \text{for } i = 1, 2, \ldots, g - 1;
\]

\[
\tau_*(a_g) = a_g, \quad \tau_*(b_g) = b_g.
\]

Furthermore, choose a basis \(\{\omega^1, \ldots, \omega^{2g-1}\}\) of \(H^{1,0}_{-1}(N)\) with \(\int a_i \omega^j = \delta^j_i\) for \(i, j = 1, 2, \ldots, 2g - 1\).

Then \(H^{1,0}_{-1}(N) = (\omega^1 - \omega^{g-1}) \cdot \mathbb{C} \oplus \cdots \oplus (\omega^{g-1} - \omega^{2g-1}) \cdot \mathbb{C}\), hence

\[
H^{1,0}_{-1}(N)^* = \left(\int_{a_i-a_{g+1}} \right) \cdot \mathbb{C} \oplus \cdots \oplus \left(\int_{a_{g-1}-a_{-1}} \right) \cdot \mathbb{C}.
\]

In this case \(\mu\) is given as follows:

\[
\gamma \to \left[\sum_{i=1}^{g-1} \left(\int_{a_i} (\omega^i - \omega^{i+g}) \right) + \left(\int_{a_i-a_{i+g}} \right) \right],
\]

which is exactly the map \(\gamma \to PA(\gamma)\). Q.E.D.
In fact using the same basis of $H^{1,0}(N)$ we have a map $j: P(N, \tau) \to J(N)$, where $J(N)$ is the Jacobi variety of N and
\[
j \circ \mu(\gamma) = \left[\left(\int_{\Gamma} (\omega^1 - \omega^{g+1}) \right), \ldots, \int_{\Gamma} (\omega^{g-1} - \omega^{2g-1}), 0, -\int_{\Gamma} (\omega^1 - \omega^{g+1}), \ldots, -\int_{\Gamma} (\omega^{g-1} - \omega^{2g-1}) \right].
\]
It is clear that $j \circ \mu = (1 - \tau) \circ Ab$, where $Ab: N \to J(N)$ is the Abel's map for N.

5. Proof of Theorem 8

For the Abel's map $Ab: N \to J(N)$ we have $(1 - \tau) \circ Ab(D) = Ab((1 - \tau)D)$ for each $D \in \text{Div}^0 N$. Since each generator of A with minimal length has type $(1 - \tau)(P - Q)$ then
\[
j \circ \mu((1 - \tau)(P - Q)) = (1 - \tau) \circ Ab \circ (1 - \tau)(P - Q) = Ab \circ (1 - \tau)^2(P - Q) = 2Ab \circ (1 - \tau)(P - Q) = 2PA(P - Q).
\]
It follows that we must consider the map
\[
\Phi: N \times N \to P(N, \tau) \subset J(N), \quad (P, Q) \mapsto 2 \cdot PA(P - Q).
\]

Lemma 6. Let N be a smooth projective curve with an involution τ without fixed points. If N is neither a 4-, nor 8-sheeted covering of \mathbb{P}^1, then $\Phi(P_1, Q_1) = \Phi(P_2, Q_2)$ if and only if: either $(P_1, Q_1) = (P_2, Q_2)$ or $(P_1, Q_1) = (\tau(Q_2), \tau(P_2))$ or $(P_1, P_2) = (Q_1, Q_2)$.

Proof. $\Phi(P_1, Q_1) = \Phi(P_2, Q_2)$ iff $2PA(P_1 + Q_2 - Q_1 - P_2) = 0$ in $J(N)$. We consider $D = 2(1 - \tau)(P_1 + Q_2 - Q_1 - P_2)$ as an element of $\text{Div}^0 N$. If $D \neq 0$ then $D = D_+ - D_-$, $D_+ > 0$, $\deg D_+ = \deg D_- = 4$ or 8 and $\text{supp} D_+ \cap \text{supp} D_- = \emptyset$. Since $Ab(D) = 0$ in $J(N)$, then by Abel's theorem for N we conclude that there exists a map $N \to \mathbb{P}^1$ of degree 4 or 8 which is impossible by hypothesis. Thus $D = 0$, which is possible only in the cases listed in the lemma. Q.E.D.

Theorem 7. Let X be a curve of 1, for which N/τ is a generic curve of genus $g(N/\tau) \geq 15$. Then using the mixed Hodge structure of $H^1(X, \mathbb{Z})$, constructed in 4, we can get $N, \tau: N \to N$ and Ω.

Proof. The mixed Hodge structure gives us $J^0W_{-1}H^1_-(X) \cong P(N, \tau)$. Using the generic Torelli theorem (V. Kanev [5], Friedman-Smith [4]) we obtain N and $\phi: N \to M$, which gives us (N, τ). Let R be the finite subset of $L^0H^1_-(X)$ defined as follows. If there exist elements b of $L^0H^1_-(X)$ with $(b, b) = 4$, then $R = \{ a | (a, a) = 4 \}$. Otherwise put $R = \{ a | (a, a) = 8 \}$ (see Lemma 1). Consider the 1-motive: $u: L^0H^1_-(X) \to J^0W_{-1}H^1_-(X)$. Since $g(N/\tau) \geq 15$ then N/τ is not a covering of \mathbb{P}^1 of degree 4 or 8 (see [1, p. 214]) implying N.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
is not a covering of \mathbb{P}^1 of degree 4 or 8. Then by Proposition 5 and Lemma 6 the set $u(R)$ uniquely determines the set Ω. Q.E.D.

Theorem 8. Let X satisfy the conditions of Theorem 7. Suppose X has only one singular point. Then X and σ are uniquely determined by the PMHS defined in 4.

Proof. By using Theorem 7 we reconstruct N, τ, and Ω; since X has an ordinary singular point, which is obtained by identification of the points of Ω, we recover X and σ. Q.E.D.

Acknowledgments

It is my pleasure to express gratitude to V. Kanev who posed the problem of this paper and whose suggestions contributed to the simplifying of the primary proof.

I would also like to thank the referee for his useful comments and suggestions which helped to clarify the exposition.

References

Department of Mathematics and Informatics, Sofia University, A. Ivanov St. 5, Sofia 1126 Bulgaria

Current address: Department of Algebra, Steklov Mathematical Institute, Vavilova 42, Moscow GSP-1 117966 USSR