NORM EXPONENTS AND REPRESENTATION GROUPS

HANS OPOLKA

(Communicated by William Adams)

Abstract. This note provides an upper bound for the exponent of the norm residue group $k^*/\text{Norm}_{K/k}(K^*)$ of a finite Galois extension K/k of number fields that depends on the obstruction to the Hasse norm principle for K/k and on a group theoretical constant.

Let K/k be a finite Galois extension of number fields with Galois group $G = \text{Gal}(K/k)$. We call $v = v(K/k) = \text{exponent of } k^*/\text{Norm}_{K/k}(K^*)$

the norm exponent of K/k. Obviously v divides the degree $(K : k)$, and from the density theorem and the local reciprocity isomorphism we see that $\exp(G)$ divides v. In this note we derive a “good” upper bound for v which depends on the obstruction to the Hasse norm principle for K/k, i.e. on the kernel $\mathcal{H} = \mathcal{H}(K/k)$ of the natural map

$$\tilde{H}^0(G, K^*) \rightarrow \tilde{H}^0(G, A_K^*),$$

where \tilde{H}^0 denotes the Tate cohomology in dimension 0 and A_K^* the group of units of the adele ring A_K of K, and on a group theoretical constant. It implies and improves all previous results in this respect [4; 7; 8, p. 100]. Tate has observed (see [2, p. 198]) that \mathcal{H} is dual to the kernel $\mathcal{H} = \mathcal{H}(K/k)$ of the localization map

$$H^2(G, C^*) \rightarrow \prod_{\overline{v}} H^2(G_{\overline{v}}, C^*);$$

here $G_{\overline{v}}$ denotes the decomposition group of an extension \overline{v} of the place v of k and cohomology is taken with respect to the trivial group action. A finite group extension \tilde{G} of G is said to be defined by a subgroup $\mathcal{A} \leq H^2(G, C^*)$ if \mathcal{A} is contained in the kernel of the inflation map $H^2(G, C^*) \rightarrow H^2(\tilde{G}, C^*)$. Define

$$\lambda = \lambda(K/k) = \text{minimum of all } \exp(\tilde{G}),$$

Received by the editors October 20, 1988 and, in revised form, January 20, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 12A10, 12A65.
where \(\tilde{G} \) runs over all finite group extensions of \(G \) which are defined by \(\mathcal{H} \). (Note that, in contrast to [7, lines 17/18] it is not required that the embedding problem corresponding to \(\tilde{G} \) is solvable.)

For any natural number \(r \) put

\[
X(k, r) := \bigcap_v \left(k^* \cap (k^*_v)^r \right)/k^r,
\]

where \(v \) runs over all places of \(k \); it is well known that \(X(k, r) \) is trivial if \(r \) is odd and that \(|X(k, r)| \leq 2 \) in any case (see, e.g. [1, p. 93ff]). We prove

1. **Theorem.** \(\nu \) divides \(\lambda \cdot |X(k, \lambda)| \).

Proof. Represent every cocycle class \((f) \in \mathcal{H} \) by a cocycle \(f: G \times G \to \mu_m \), \(\mu_m = \text{group of roots of unity in } \mathbb{C}^* \text{ of order } m = \exp(\mathcal{H}) \), such that the central group extension \(G(f) \) defined by \((f) \) has minimal exponent. Put \(\tilde{m} = \tilde{m}_f = n \cdot |X(k, n)| \) where \(n = n_f = \exp(G(f)) \). Let \(C_r \) be the cyclic group of order \(r \). We assume that the action of \(G \) on \(C_r \) is trivial. \((f) \in \mathcal{H} \) implies that the class of the induced cocycle

\[
f': G \times G \to C_m \hookrightarrow C_n
\]

(we identify \(C_r \) with \(\mu_r \)) belongs to the kernel of the homomorphism

\[
H^2(G, C_n) \to \prod_v H^2(G_v, C_n).
\]

Let \(X_r \) be the kernel of the homomorphism

\[
H^2(G_k, C_r) \to \prod_v H^2(G_{k_v}, C_r),
\]

where \(G_k \) resp. \(G_{k_v} \) are the absolute Galois groups of \(k \) and \(k_v \) respectively. \(X_r \) is dual to \(X(k, r) \). It follows that \(\text{Inf}_{G_k} ((f')) \in X_n \). Since the natural map \(X(k, \tilde{m}) \to X(k, n) \) is trivial, it follows that the canonical homomorphism \(X_n \to X_{\tilde{m}} \) is trivial. Hence the embedding problem defined by the cocycle

\[
f'_f: G \times G \to \mu_m \hookrightarrow \mu_{\tilde{m}}
\]

has a surjective solution (see, e.g., [3, especially pp. 88, 96]). Let \(L_{f_i}/K/k \) be a solution of this embedding problem and denote by \(L \) the compositum of all \(L_{f_i} \), \((f) \in \mathcal{H} \). Then \(\text{Gal}(L/k) \) is defined by \(\mathcal{H} \). As shown in [6, (2.5)], this means that every element in \(k^* \) which is a norm locally everywhere in \(L/k \) is a global norm in \(K/k \). As remarked earlier the density theorem and local class field theory show that \(\exp(\text{Gal}(L/k)) \) is the l.c.m. of all the local norm exponents of \(L/k \). Hence \(\nu(K/k) \) divides \(e = \exp(\text{Gal}(L/k)) \). The equality \(\exp(\text{Gal}(L_{f_i}/k)) = \tilde{m}_f \) shows that \(e \) divides the l.c.m. of all \(\tilde{m}_f \), \((f) \in \mathcal{H} \).

Clearly \(\tilde{G} := \times_{(f)} G(f) \), \((f) \in \mathcal{H} \), is defined by \(\mathcal{H} \), and the exponent of \(\tilde{G} \) equals \(\lambda \cdot |X(k, \lambda)| \). This completes the proof.
2. Remark. Clearly \(\nu(K/k) \) divides the l.c.m. of all \(\nu(K/k^p) \), \(p \) a prime, where \(k^p \) is the fixed field of a \(p \)-Sylow subgroup \(G^p \) of \(G \), because the restriction map \(\widehat{H}^0(G, K^*) \to \widehat{H}^0(G^p, K^*) \) is injective on the \(p \)-part of \(\widehat{H}^0(G, K^*) \).

For any finite group \(G \) define

\[
\delta(G) := \begin{cases}
1 & \text{if } |G| \text{ is odd}, \\
2 & \text{if } |G| \text{ is even}.
\end{cases}
\]

Every finite abelian group \(G \) has a representation group \(\widetilde{G} \) such that \(\exp(G) \) divides \(\delta(G) \cdot \exp(G) \). This comes from the isomorphism \(H^2(G, \mathbb{C}^*) \cong (G \wedge G)^* \) given by \((f) \mapsto \omega_{(f)} \) where

\[
\omega_{(f)}(x, y) = f(x, y)/f(y, x), \quad x, y \in G.
\]

Since \(\omega_{(f)} \) is a symplectic pairing on \(G \) we may choose the cocycle \(f \) in such a way that \(f \) is bimultiplicative. Then an easy computation shows that the group extension defined by \(f \) has exponent dividing \(\delta(G) \cdot \exp(G) \).

In [9, Corollary (4.7)] it is shown that every \(p \)-group \(G \), \(p \neq 2 \), such that the class of \(G \) is \(\leq p - 2 \) and such that \(\exp(G) = p \) has a representation group of exponent \(p \).

Furthermore, by [5, V, 24.5], the exponent of any representation group of a finite group \(G \) divides the order of \(G \).

Therefore 1 and 2 give the following result

3. Proposition. Assume that every \(p \)-Sylow subgroup of the finite Galois group \(G = \text{Gal}(K/k) \) is abelian or of exponent \(p \neq 2 \) and class \(\leq p - 2 \). Then \(\nu \) divides \(\delta(G) \cdot |X(k, r)| \cdot \exp(G) \) where \(r = |G| = (K : k) \).

ACKNOWLEDGMENT

I would like to thank the referees for their remarks.

REFERENCES

Mathematisches Institut, Bunsenstrasse 3-5, D-3400 Göttingen, Germany