On the extensions of vector-valued Loeb measures

Authors:
Horst Osswald and Yeneng Sun

Journal:
Proc. Amer. Math. Soc. **111** (1991), 663-675

MSC:
Primary 28E05; Secondary 03H05, 28B05, 46G10, 46S20

DOI:
https://doi.org/10.1090/S0002-9939-1991-1047007-6

MathSciNet review:
1047007

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two ways of constructing countably additive vector measures from internal vector measures are given. The connection of the extendability of vector-valued Loeb measures and the existence of the internal control measures is shown.

**[1]**J. Diestel and J. J. Uhl Jr.,*Vector measures*, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR**0453964****[2]**A. Grothendieck,*Sur les applications linéaires faiblement compactes d’espaces du type 𝐶(𝐾)*, Canadian J. Math.**5**(1953), 129–173 (French). MR**0058866****[3]**C. Ward Henson and L. C. Moore Jr.,*Nonstandard analysis and the theory of Banach spaces*, Nonstandard analysis—recent developments (Victoria, B.C., 1980) Lecture Notes in Math., vol. 983, Springer, Berlin, 1983, pp. 27–112. MR**698954**, https://doi.org/10.1007/BFb0065334**[4]**Albert E. Hurd and Peter A. Loeb,*An introduction to nonstandard real analysis*, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR**806135****[5]**Peter A. Loeb,*Conversion from nonstandard to standard measure spaces and applications in probability theory*, Trans. Amer. Math. Soc.**211**(1975), 113–122. MR**0390154**, https://doi.org/10.1090/S0002-9947-1975-0390154-8**[6]**Peter A. Loeb,*A functional approach to nonstandard measure theory*, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 251–261. MR**737406**, https://doi.org/10.1090/conm/026/737406**[7]**P. A. Loeb and H. Osswald,*Nonstandard integration theory in solid Riesz space*(to appear).**[8]**Yeneng Sun,*On the theory of vector valued Loeb measures and integration*, J. Funct. Anal.**104**(1992), no. 2, 327–362. MR**1153991**, https://doi.org/10.1016/0022-1236(92)90004-3**[9]**Yeneng Sun,*A nonstandard proof of the Riesz representation theorem for weakly compact operators on 𝐶(Ω)*, Math. Proc. Cambridge Philos. Soc.**105**(1989), no. 1, 141–145. MR**966150**, https://doi.org/10.1017/S0305004100001468**[10]**Yeneng Sun,*A Banach space in which a ball is contained in the range of some countably additive measure is superreflexive*, Canad. Math. Bull.**33**(1990), no. 1, 45–49. MR**1036854**, https://doi.org/10.4153/CMB-1990-007-5**[11]**-,*Nonstandard theory of vector measures*, Ph.D. dissertation, University of Illinois, Urbana, Illinois, 1989.**[12]**Rade T. Živaljević,*Loeb completion of internal vector-valued measures*, Math. Scand.**56**(1985), no. 2, 276–286. MR**813641**, https://doi.org/10.7146/math.scand.a-12101

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28E05,
03H05,
28B05,
46G10,
46S20

Retrieve articles in all journals with MSC: 28E05, 03H05, 28B05, 46G10, 46S20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1047007-6

Article copyright:
© Copyright 1991
American Mathematical Society