On the extensions of vector-valued Loeb measures

Authors:
Horst Osswald and Yeneng Sun

Journal:
Proc. Amer. Math. Soc. **111** (1991), 663-675

MSC:
Primary 28E05; Secondary 03H05, 28B05, 46G10, 46S20

DOI:
https://doi.org/10.1090/S0002-9939-1991-1047007-6

MathSciNet review:
1047007

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two ways of constructing countably additive vector measures from internal vector measures are given. The connection of the extendability of vector-valued Loeb measures and the existence of the internal control measures is shown.

**[1]**J. Diestel and J. J. Uhl,*Vector measures*, Mathematical Surveys Number 15, Amer. Math. Soc., Providence, RI, 1977. MR**0453964 (56:12216)****[2]**A. Grothendieck,*Sur les applications linearies faiblement compactes d'espaces du type*, Canad. J. Math.**5**(1953), 129-173. MR**0058866 (15:438b)****[3]**C. W. Henson and L. C. Moore,*Nonstandard analysis and theory of Banach spaces, Nonstandard analysis recent developments*(A. E. Hurd, ed.), Lecture Notes in Math., vol. 983, Springer-Verlag, Berlin, 1983. MR**698954 (85f:46033)****[4]**A. E. Hurd and P. A. Loeb,*An introduction to nonstandard real analysis*, Academic Press, Orlando, Florida, 1985. MR**806135 (87d:03184)****[5]**P. A. Loeb,*Conversion from nonstandard to standard measure spaces and applications in probability theory*, Trans. Amer. Math. Soc.**211**(1975), 113-122. MR**0390154 (52:10980)****[6]**-,*A functional approach to nonstandard measure theory*, Contemp. Math.**26**(1984), 251-261. MR**737406 (86b:28026)****[7]**P. A. Loeb and H. Osswald,*Nonstandard integration theory in solid Riesz space*(to appear).**[8]**Y. Sun,*On the theory of vector valued Loeb measures and integration*(to appear). MR**1153991 (93a:46146)****[9]**-,*A nonstandard proof of the Riesz representation theorem for weakly compact operators on*, Math. Proc. Comb. Phil. Soc.**105**(1989), 141-145. MR**966150 (89i:47059)****[10]**-,*A Banach space in which a ball is contained in the range of some countably additive measure is superreflexive*, Canad. Math. Bull.**33**(1990), 45-49. MR**1036854 (91a:46018)****[11]**-,*Nonstandard theory of vector measures*, Ph.D. dissertation, University of Illinois, Urbana, Illinois, 1989.**[12]**R. T. Zivaljevic,*Loeb completion of internal vector valued measures*, Math. Scand.**56**(1985), 276-286. MR**813641 (87k:28021)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28E05,
03H05,
28B05,
46G10,
46S20

Retrieve articles in all journals with MSC: 28E05, 03H05, 28B05, 46G10, 46S20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1047007-6

Article copyright:
© Copyright 1991
American Mathematical Society