CE-EQUIVALENCE, UV^k-EQUIVALENCE
AND DIMENSION OF COMPACTA

PETER MROZIK

Abstract. It is shown that for each $k > 0$ there exists a finite-dimensional continuum X which is not UV^k-equivalent, and therefore not CE-equivalent, to any continuum Y such that the dimension of Y is equal to the shape dimension of X.

A map of compacta is cell-like (CE) if all point-inverses have trivial shape. On the class CM_f of finite-dimensional compacta, the CE maps generate an equivalence relation known as CE-equivalence. To be precise, $X, Y \in CM_f$ are said to be CE-equivalent if there exist spaces $X_1 = X, X_2, \ldots, X_{2n}, X_{2n+1} = Y$ in CM_f and CE maps $X_{2i} \to X_{2i+1}$, $i = 1, \ldots, n$. CE-equivalence implies shape equivalence, but the converse fails to be true (see S. Ferry [2] or our paper [5]). This leaves the general problem to decide whether a given invariant of CE-equivalence is a shape invariant or not. This paper is concerned with a very natural dimension invariant. For $X \in CM_f$, the CE-dimension of X is defined as the number

$$CE\text{-dim } X = \min\{\dim Y | Y \text{ is CE-equivalent to } X\}.$$

Obviously, $CE\text{-dim } X \geq Sd X$ (shape dimension of X; see e.g. [4]). Using our notation, we can restate a question which appears in "A list of open problems in shape theory" by J. Dydak and J. Segal:

Is it true that $CE\text{-dim } X = Sd X$ for each $X \in CM_f$?

In other words, is $CE\text{-dim } X$ a shape invariant?

We shall show that the answer is "no." For this purpose it will be convenient to work with the weaker concept of UV^k-equivalence, that is, the equivalence relation on the class of metrizable spaces generated by the proper UV^k-maps (cf. [3, 5]). Recall that a map is UV^k if all point-inverses are UV^k, that is, have vanishing homotopy pro-groups up to dimension k. The definition of the UV^k-dimension of a metrizable space X, abbreviated by $UV^k\text{-dim } X$, can safely be left to the reader. Since CE-equivalence implies UV^k-equivalence, we have $CE\text{-dim } X \geq UV^k\text{-dim } X$ for each $X \in CM_f$.

Received by the editors July 7, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 55P55.
Theorem. Let X_0 be a continuum (= nonempty connected compactum) such that pro-$\pi_1(X_0)$ is not pro-finite. For each $k > 0$, there exists a compactum X_k with the following properties:

1. X_k and X_0 are shape equivalent;
2. $\dim X_k = \max(\text{Sd} X_0, k + 2)$;
3. UV^k-$\dim X_k = k + 1$.

This shows in particular that the difference CE-$\dim X - \text{Sd} X$ can be arbitrarily large even within a fixed shape equivalence class of finite-dimensional continua.

The proof of the theorem is based on the theory of UV^k-components developed in [5]. Clearly, it is no restriction to assume that $\dim X_0 = \text{Sd} X_0$. Let P_k denote the polyhedron obtained by attaching the $(k + 1)$-cell D^{k+1} to the k-sphere $S^k = \partial D^{k+1}$ by a map $f : S^k \to S^k$ of degree 2. By [5, Theorem 6.1], there exists a compactum $X_k \supset X_0$ such that the remainder $X' = X_k \setminus X_0$ is a UV^1-component of X_k homeomorphic to $P_k \times (0, \infty)$. By construction, X_k satisfies (1) and (2) (cf. [5, Proposition 4.1]). Since X' is path-connected, X' clearly is a UV^k-component of X_k. Now assume that UV^k-$\dim X_k \leq k$. Then there is a compactum Y, $\dim Y \leq k$, such that X_k and Y are UV^k-equivalent. By [5, Theorem 2.15] there exists a UV^k-component Y' of Y such that X' and Y' are UV^k-equivalent. From [5, Theorem 1.4] we infer that there are basepoints $x \in X'$ and $y \in Y'$ such that pro-$\pi_i(X', x) \approx$ pro-$\pi_i(Y', y)$ for $i = 0, \ldots, k$. This yields pro-$\pi_i(Y', y) \approx 0$ for $i = 0, \ldots, k - 1$ and pro-$\pi_k(Y', y) \approx \mathbb{Z}_2$. The Hurewicz isomorphism theorem in shape theory (see e.g. [4, Chapter II §4.1, Theorem 1]) implies then pro-$H_k(Y') \approx \mathbb{Z}_2$. On the other hand, $\text{Sd} Y' \leq \dim Y' \leq \dim Y \leq k$, that is, Y' has an HPol-expansion $Y' \to \{Y_o\}$ where all Y_o are polyhedra of dimension $\leq k$. Therefore pro-$H_k(Y')$ can be represented by an inverse system of free abelian groups, which cannot be isomorphic to \mathbb{Z}_2. This contradiction proves UV^k-$\dim X_k \geq k + 1$. The equation (3) follows now from Ferry’s observation that UV^k-$\dim X \leq k + 1$ for any compactum X (see [3, Proposition 1.10]).

Remarks. (1) Let C_{prof} denote the class of continua X such that pro-$\pi_1(X)$ is pro-finite. Our theorem leaves the question whether CE-$\dim X = \text{Sd} X$ for each finite-dimensional $X \in C_{\text{prof}}$. However, we have a complete picture regarding UV^k-$\dim X$ for $X \in C_{\text{prof}}$. On C_{prof}, shape equivalence implies UV^k-equivalence (see [3, Theorem 2]); hence UV^k-$\dim X \leq \text{Sd} X$. Moreover, for compacta of dimension $\leq k$, UV^k-equivalence implies shape equivalence (see [3, Theorem 1]). We infer that UV^k-$\dim X = \text{Sd} X$ whenever $\text{Sd} X \leq k$: Choose a compactum Y shape equivalent to X with $\dim Y = \text{Sd} X$ and a compactum Z UV^k-equivalent to X with $\dim Z = \text{UV}^k$-$\dim X$; then Y
and Z must be UV^k-equivalent of dimension $\leq k$, whence $\text{Sd} X = \text{Sd} Z \leq \dim Z = UV^k$-dim X. On the other hand, if $\text{Sd} X > k$, UV^k-dim X can take any of the values $0, 2, 3, \ldots, k + 1$: Let $r > k$ and define $Y_0 = S^r$, $Y_j = S^r \vee S^j$ for $j = 2, \ldots, k$, $Y_{k+1} = S^r \vee P_k$ (\vee denotes one-point union and P_k is taken from the above proof). Then all $Y_i \in \text{C}_{\text{prof}}$, $\text{Sd} Y_i = r$, but UV^k-dim $Y_i = i$. Note that neither UV^k-dim $X = 1$ nor $\text{Sd} X = 1$ is possible when $X \in \text{C}_{\text{prof}}$.

(2) The counterexamples given in our theorem are not locally connected. However, for each $k > 0$ R. Daverman and G. Venema have constructed an LC$^{k-1}$ continuum X_k of dimension $k + 1$ which is shape equivalent to S^1 but not CE-equivalent to S^1 (see [1]). Such an X_k has $\text{Sd} X_k = 1$ but is not CE-equivalent to any locally connected one-dimensional compactum (since shape equivalence and CE-equivalence are the same on locally connected one-dimensional compacta, see [1]).

REFERENCES

FB Mathematik, Universität-Gesamthochschule Siegen, Hölderlinstr. 3, 5900 Siegen, Federal Republic of Germany