Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



CE-equivalence, $ UV\sp k$-equivalence and dimension of compacta

Author: Peter Mrozik
Journal: Proc. Amer. Math. Soc. 111 (1991), 865-867
MSC: Primary 55P55
MathSciNet review: 1057958
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for each $ k > 0$ there exists a finite-dimensional continuum $ X$ which is not $ {\text{U}}{{\text{V}}^k}$-equivalent, and therefore not CE-equivalent, to any continuum $ Y$ such that the dimension of $ Y$ is equal to the shape dimension of $ X$.

References [Enhancements On Off] (What's this?)

  • [1] R. J. Daverman, G. A. Venema, CE-equivalence and shape equivalence of $ 1$-dimensional compacta, Topology Appl. 26 (1987), 131-142. MR 896869 (89b:57012)
  • [2] S. Ferry, Shape equivalence does not imply CE equivalence, Proc. Amer. Math. Soc. 80 (1980), 154-156. MR 574526 (81d:55013)
  • [3] -, $ U{V^k}$-equivalent compacta, Geometric Topology and Shape Theory (S. Mardešić and J. Segal, eds.), Lecture Notes in Math., vol. 1283, Springer-Verlag, Berlin, Heidelberg, and New York, 1987, pp. 88-114.
  • [4] S. Mardešić, J. Segal, Shape theory, North-Holland, Amsterdam, 1982. MR 676973 (84b:55020)
  • [5] P. Mrozik, Continua that are shape-equivalent but not $ U{V^1}$-equivalent, Topology Appl. 30 (1988), 199-210. MR 967756 (90c:55008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P55

Retrieve articles in all journals with MSC: 55P55

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society