A NOTE ON COBORDISM OF SURFACE LINKS IN S^4

MASAHICO SAITO

(Communicated by Frederick R. Cohen)

Abstract. Sato's idea of the asymmetric linking number is used in cyclic branched coverings to give an invariant of the cobordism of embedded surfaces in the 4-sphere.

In this article we consider the link cobordism of surface links in S^4. We work in the smooth category.

Let $L = J \cup K$ be a link in S^4, where J, K are embedded, oriented connected surfaces. L is called semi-boundary [S] if each component bounds an embedded, orientable 3-manifold in S^4 which misses the other component. Sato [S] defined the asymmetric linking number, denoted by $\text{alk}(J, K)$, to be the nonnegative generator of the image of $H_1(K : \mathbb{Z}) \to H_1(S^4 \setminus J : \mathbb{Z}) \cong \mathbb{Z}$. He proved that a link is semi-boundary iff

$$\text{alk}(J, K) = 0 = \text{alk}(K, J),$$

and being semi-boundary is preserved under link cobordism. We call two surface links $L_0 = J_0 \cup K_0$ and $L_1 = J_1 \cup K_1$ cobordant if there are disjointly embedded, orientable 3-manifolds C and E in $S^4 \times I$ such that $\partial C = J_0 \cup (-J_1)$, $\partial E = K_0 \cup (-K_1)$, and C, E are homeomorphic to $J_0 \times I$, $K_0 \times I$, respectively, where we regard L_i as lying in $S^4 \times \{i\}$. A link is called null-cobordant if it is cobordant to the standardly embedded surfaces (which bound disjoint handlebodies) in S^4. Thus alk can be regarded as the first obstruction to links being null-cobordant, and we focus on semi-boundary links from now on. The Sato-Levine invariant was defined [S] for semi-boundary links, and Cochran [C] defined the derived series of this invariant. In this paper we observe that the covering asymmetric linking number can be used as a link cobordism invariant and give examples of links with vanishing Sato-Levine invariant and trivial derivatives which belong to different cobordism classes.

Let $L = J \cup K$ be a 2-component, oriented semi-boundary link. Consider the n-fold cyclic branched covering M of S^4 along J, where $n = p^r$ is a prime power. Then there are n lifts k_0, \ldots, k_{n-1} of K to M since L is
semi-boundary. We can assume that $k_{i+1} = \tau k_j$ where τ is the generator of covering translations. We regard n as 0 and $n + 1$ as 1, so that the indices of lifts are regarded as lying in \mathbb{Z}_n.

Lemma 1. $H_1(M; k_j : \mathbb{Q})$ is isomorphic to either 0 or \mathbb{Q}. Furthermore, this is a link cobordism invariant. More precisely, let $L_i = J_i \cup K_i$ ($i = 0, 1$) be cobordant links and M_i, k^i_j be their cyclic branched coverings and the lifts of K_i respectively ($i = 0, 1, j = 0, \ldots, n - 1$). Then

$$H_1(M_0; k^0_j : \mathbb{Q}) \cong H_1(M_1; k^1_j : \mathbb{Q}).$$

In particular, this is \mathbb{Q} if L is null-cobordant.

The proof is given later. If $H_1(M; k_j : \mathbb{Q}) = 0$, then L is not null-cobordant. Thus we focus on links with $H_1(M; k_j : \mathbb{Q}) = \mathbb{Q}$. Consider the following homomorphism

$$H_1(k_j; \mathbb{Q}) \rightarrow H_1(M; k_0 : \mathbb{Q}) \cong \mathbb{Q}.$$

Definition 2. Define $\xi^j_n = 0$ if this homomorphism is zero, $\xi^j_n = 1$ otherwise ($j = 1, \ldots, n - 1$).

Theorem 3. $\xi^j_n \in \mathbb{Z}_2, j \in \mathbb{Z}_n \setminus \{0\}$, are link cobordism invariants.

Proof of Lemma 1. Let X_n be the n-fold cyclic (unbranched) covering (X_{∞} denotes the infinite cyclic covering) of $X = S^3 \setminus N(J)$. Then we have an exact sequence ([S-S]) with integral coefficient

$$\cdots \rightarrow H_q(X_{\infty}) \rightarrow H_q(X_n) \rightarrow H_{q-1}(X_{\infty}) \rightarrow \cdots,$$

where t is the homomorphism induced from the generator of covering transformations. Thus we have

$$H_1(X) \rightarrow H_0(X_{\infty}) \xrightarrow{t - 1} H_0(X_{\infty}) \rightarrow \mathbb{Z} \rightarrow 0.$$

Hence $(t - 1): H_1(X_{\infty} : \mathbb{Z}) \rightarrow H_1(X_{\infty} : \mathbb{Z})$ is surjective. Therefore $(t^n - 1) = (t - 1)^n: H_1(X_{\infty} : \mathbb{Z}_p) \rightarrow H_1(X_{\infty} : \mathbb{Z}_p)$ is also surjective ($n = p^r$ is a prime power). Again using the exact sequence, we have $H_1(X_n : \mathbb{Z}_p) = \mathbb{Z}_p$. But the lift of the meridian of J represents a nontrivial element of infinite order in $H_1(X_n : \mathbb{Z})$. Hence $H_1(X_n : \mathbb{Q}) = \mathbb{Q}$. Thus we have $H_1(M : \mathbb{Q}) = 0$. A Mayer-Vietoris sequence with \mathbb{Q}-coefficients gives

$$H_1(\partial N(k_j)) \rightarrow H_1(N(k_j)) \oplus H_1(M \setminus N(k_j)) \rightarrow H_1(M) \rightarrow \mathbb{Q}^{2g} \oplus \mathbb{Q} \rightarrow 0,$$

where g is the genus of K. Hence $H_1(M; k_j : \mathbb{Q}) = 0$ or \mathbb{Q}.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let \(L_i = J_i \cup K_i \) \((i = 0, 1)\) be cobordant links via \(C, E \), and let \(W \) be the \(n \)-fold cyclic branched covering of \(S^4 \times I \) along \(C, E_j \) \((j = 0, \ldots, n - 1)\) be the lifts of \(E \) to \(W \). Then \(\partial E_j = k_j^0 \cup (-k_j^1) \), where \(k_j^i \) are the lifts of \(K_i \) to \(M_i \), the \(n \)-fold branched covering of \(S^3 \) along \(J_i \). (Note that we have exactly \(n \) lifts of \(E \) because \(L_i \)'s are semi-boundary and \(E \) is homeomorphic to the product \(K_0 \times I \).) The same argument shows that \(H_1(W : \mathbb{Q}) = 0 \) and \(H_1(W \setminus E_0 : \mathbb{Q}) = 0 \) or \(\mathbb{Q} \).

We need to know the homomorphism \(H_2(M_i) \to H_2(W) \). Let \(Y = S^4 \times I \setminus N(C) \), \(Y_n \) (resp. \(Y_\infty \)) be the \(n \)-fold (resp. infinite) cyclic covering of \(Y \). Let \(X_i = S^4 \setminus J_i \), \(X_i^n \) (resp. \(X_i^\infty \)) be the \(n \)-fold (resp. infinite) cyclic covering of \(X_i \). Since \((t - 1): H_1(X_i^\infty : \mathbb{Z}) \to H_1(X_i^\infty : \mathbb{Z})\) is surjective, it is an isomorphism (because \(H_1(X_i^\infty : \mathbb{Z}) \) is a finitely generated module over a Noetherian ring \(\Lambda = \mathbb{Z}[t, t^{-1}] \), see \([S-S]\)). Also we have \(H_2(Y, X_i) = 0 \) since the inclusion induces an isomorphism \(H_*(X_i) \cong H_*(Y) \). Therefore we have the following commutative diagram with \(\mathbb{Z} \)-coefficients:

\[
\begin{array}{ccc}
0 & \to & H_2(X_i^\infty) \\
\downarrow & & \downarrow \\
0 & \to & H_2(Y_\infty) \\
\downarrow & & \downarrow \\
0 & \to & H_2(Y_n, X_i^n) \\
\end{array}
\]

Note that \(i_*: H_2(X_i) \to H_2(Y) \) (the homomorphism induced from the inclusion map) is an isomorphism, and \(H_2(X_i) \cong \mathbb{Z}^h \), where \(h \) is the genus of \(J_i \).

Consider the following splitting

\[
H_2(X_i^\infty : \mathbb{Q}) \cong F(X_i^\infty : \mathbb{Q}) \oplus T(X_i^\infty : \mathbb{Q})
\]

where \(F(\cdot), T(\cdot) \) denote the free and torsion part of \(H_2(\cdot) \) as a \(\Gamma = \Lambda \otimes \mathbb{Q} \)-module respectively (\(\Gamma \) is a PID). Furthermore, \(T(X_i^\infty : \mathbb{Q}) = T^0(X_i^\infty : \mathbb{Q}) \oplus T^1(X_i^\infty : \mathbb{Q}) \), where

\[
T^0(X_i^\infty : \mathbb{Q}) \cong \mathbb{Q} / (t - 1)^{p_1} \oplus \cdots \oplus \mathbb{Q} / (t - 1)^{p_r}
\]

is the \((t - 1)\)-summand and \(T^1(\cdot) \) is the \((t - 1)\)-free summand.

Comparing the above sequence to the following sequence

\[
0 \to \Gamma / (t - 1) \to \Gamma / (t - 1)^{p_k} \to \Gamma / (t - 1)^{p_k} \to \Gamma / (t - 1) \to 0,
\]

where \(\Gamma / (t - 1) \cong \mathbb{Q} \), we conclude that \(T^0(X_i^\infty) = 0 \). (The same is true for \(H_2(Y_\infty) \) and \(H_2(Y_n, X_i^n) \).)

Hence \(T(X_i^\infty : \mathbb{Q}) \cong \Lambda / \lambda_1 \oplus \cdots \oplus \Lambda / \lambda_m \) where \(\lambda_j \) is normalized so that \(\lambda_j \in \Lambda \) and coefficients are relatively prime \((j = 1, \ldots, m)\).
On the other hand, \(\text{Cok}(t - 1 : H^i_2(X^i_\infty : Z) \to H^i_2(X^i_\infty : Z)) \) is isomorphic to \(H^i_2(X^i_\infty) \otimes_\Lambda Z \), where \(Z \) is regarded as \(\Lambda \)-module via the augmentation map \(\Lambda \to Z, t \to 1 \) [S-S]. Since \(H^2_2(X) \) is torsion free, we have \(\lambda_j(1) = \pm 1, j = 1, \ldots, m \) [S-S]. Then the same argument as Theorem 3 in [Sum] shows that

\[
\text{Cok}(t^n - 1 : T(X^i_\infty : Q) \to T(X^i_\infty : Q)) = 0 \quad (n = p^r).
\]

The same is true for \(H^2_2(Y^i_\infty, X^i_\infty) \) and we have \(H^2_2(Y_n, X^i_n : Q) = 0 \) (since \(H^2_2(Y^i_\infty, X^i_\infty) \) is \(\Gamma \)-torsion), and hence \(i_* : H^i_2(X^i_n : Q) \to H^i_2(Y^i_n : Q) \) is an epimorphism.

Since \(t - 1 \) is an isomorphism on \(T(X^i_\infty) \), the sequence

\[
0 \to F(X^i_\infty) \xrightarrow{t-1} F(X^i_\infty) \to H^2_2(X^i) \to 0
\]

shows that \(\text{rank}_F F(X^i_\infty) = 2g \) where \(g \) is the genus of \(J_i \). The same is true for \(Y^i_\infty \) and the similar exact sequences for \(t^n - 1 \) show that \(\dim_Q H^2_2(X^i_n) = 2gn = \dim_Q H^2_2(Y^i_n) \). Since \(i_* : H^i_2(X^i_n : Q) \to H^i_2(Y^i_n) \) is an epimorphism of vector spaces of the same dimension, it is an isomorphism.

A Mayer-Vietoris sequence shows that \(i_* : H^i_2(M_i : Q) \to H^i_2(W : Q) \) is an isomorphism. Also we have the following Mayer-Vietoris sequences with \(Q \)-coefficients:

\[
\begin{array}{c}
H^2_2(M_i) \to H^1_1(\partial N(k^i_j)) \\
\downarrow \cong \downarrow \equiv \\
H^2_2(W) \to H^1_1(\partial N(E_j)) \\
\to H^1_1(N(k^i_j)) \oplus H^1_1(M_i \backslash \text{Int } N(k^i_j)) \to 0 \\
\cong \downarrow \downarrow \\
\to H^1_1(N(E_j)) \oplus H^1_1(W \backslash \text{Int } N(E_j)) \to 0
\end{array}
\]

It follows that

\[
i_* : H^i_1(M_i \backslash k^i_j : Q) \to H^i_1(W \backslash E_j : Q)
\]

is an isomorphism for \(i = 0, 1 \) and the lemma follows. Q.E.D.

Proof of Theorem 3. We use the same notation as in the proof of Lemma 1. Consider the following diagram with \(Q \)-coefficients:

\[
\begin{array}{c}
H^1_1(k^0_j) \to H^1_1(M_0 \backslash k^0_0) \cong Q \\
\downarrow \downarrow \\
H^1_1(E_j) \to H^1_1(W \backslash E_0) \cong Q \\
\uparrow \uparrow \\
H^1_1(k^1_j) \to H^1_1(M_1 \backslash k^1_0) \cong Q
\end{array}
\]

Each vertical homomorphism is induced from an inclusion map and an isomorphism in \(Q \)-coefficients. Hence the top homomorphism is zero iff so is the bottom homomorphism. Therefore \(\zeta^n_j \) is well-defined. Q.E.D.

Example. Let \(L_m = K_{m,0} \cup K_{m,1} \) be an “untwisted spun link” indicated in Figure 1, where \(m \) is a positive integer. (Regard \(S^4 \) as \(B^3 \times S^1 \cup S^2 \times B^2 \).
The circle in the 3-ball becomes a torus in S^4 after spinning, and the spun arc together with two disks in $S^2 \times B^2$ forms an S^2 in S^4.) Thus $K_{m,0}$ is homeomorphic to S^2, and $K_{m,1}$ to a torus. Furthermore, $K_{m,0}$ and $K_{m,1}$ are unknotted. One can calculate

$$\xi_j^n(L_m) = \begin{cases} 1 & \text{if } j \equiv \pm m \pmod{n}, \\ 0 & \text{otherwise,} \end{cases}$$

for any prime power n. Hence L_m and $L_{m'}$ are not cobordant to each other unless $m = m'$. Note that the Sato-Levine invariant vanishes and Cochran’s derivative is trivial for any m.

ACKNOWLEDGMENT

The author is grateful to Professor C. McA. Gordon for his encouragement and valuable conversations. The author is also thankful to the referee for pointing out mistakes in an earlier version.

REFERENCES

