Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Functions of the first Baire class with values in Banach spaces


Author: Charles Stegall
Journal: Proc. Amer. Math. Soc. 111 (1991), 981-991
MSC: Primary 26A21; Secondary 47H04
DOI: https://doi.org/10.1090/S0002-9939-1991-1019283-7
MathSciNet review: 1019283
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize functions of the first Baire class with values in Banach spaces and give a short self-contained proof of a result more general than the following: If $ T$ is a complete metric space, $ X$ is a Banach space, and $ \Phi :T \to \wp (X)$ (the power set of $ X$) is a mapping that is use in the weak topology then $ \Phi $ has a selector of the first Baire class. This extends some results of Hansell, Jayne, Rogers, and Talagrand.


References [Enhancements On Off] (What's this?)

  • [B] J. Bourgain, Compact sets of the first Baire class, Bull. Soc. Math. Belgium 29 (1977), 135-143. MR 0470931 (57:10674)
  • [BFT] J. Bourgain, D. Fremlin, and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 160 (1978), 845-886. MR 509077 (80b:54017)
  • [Ch] J. P. R. Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), 455-461. MR 612739 (82h:54012)
  • [F] Z. Frolík, A measurable map with analytic domain and metrizable range is quotient, Bull. Amer. Math. Soc. 75 (1970), 1112-1117. MR 0265539 (42:448)
  • [F2] -, Baire spaces and some generalizations of complete metric spaces, Czech. Math. J. 20 (1970), 406-467.
  • [H] R. Hansell, First class selectors for upper semi-continuous multifunctions, preprint, 1987. MR 916758 (88j:54031)
  • [HJR] R. Hansell, J. Jayne, and M. Talagrand, First class selectors for weakly upper semi-continuous multi-valued maps in Banach spaces, J. Reine Angew. Math. 361 (1985), 201-220. MR 807260 (87m:54059a)
  • [Ha] H. Hausdorff, Mengenlehre (3. Fassung), Dover, New York, 1944. MR 0015445 (7:419g)
  • [JR] J. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set valued maps, Acta Math. 155 (1985), 41-79. MR 793237 (87a:28011)
  • [K] K. Kuratowski, Topologie, PWN, Warszawa, 1958.
  • [L] H. Lebesgue, Œuvres scientifiques, Volume III, Université de Genève, 1972, 211-217. MR 0389523 (52:10354)
  • [M] Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980. MR 561709 (82e:03002)
  • [N] I. Namioka, Separate and joint continuity, Pacific J. Math. 51 (1974), 515-531. MR 0370466 (51:6693)
  • [S1] C. Stegall, Applications of descriptive topology in functional analysis, Universität Linz, 1985; 2nd ed., 1987.
  • [S2] -, Notes, 1976, unpublished.
  • [S3] -, The duality between Asplund spaces and spaces with the Radon-Nikodým property, Israel J. Math. 29 (1978), 408-412. MR 0493268 (58:12297)
  • [S4] -, Generalizations of a theorem of Namioka, Proc. Amer. Math. Soc. 102 (1988), 559-564. MR 928980 (89e:46050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A21, 47H04

Retrieve articles in all journals with MSC: 26A21, 47H04


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1019283-7
Keywords: First Baire class, Banach spaces
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society