An approximation property related to -ideals of compact operators

Authors:
Rafael Payá and Wend Werner

Journal:
Proc. Amer. Math. Soc. **111** (1991), 993-1001

MSC:
Primary 46B20; Secondary 47B07, 47D15, 47D30

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039261-1

MathSciNet review:
1039261

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate a variant of the compact metric approximation property which, for subspaces of , is known to be equivalent to , the space of compact operators on , being an -ideal in the space of bounded operators on . Among other things, it is shown that an arbitrary Banach space has this property iff is an -ideal in for all Banach spaces and, furthermore, that must contain a copy of . The proof of the central theorem of this note uses a characterization of those Banach spaces for which is an -ideal in obtained earlier by the second author, as well as some techniques from Banach algebra theory.

**[1]**E. M. Alfsen and E. G. Effros,*Structure in real Banach spaces. Parts*I*and*II. Ann of Math.**96**(1972), 98-173. MR**0352946 (50:5432)****[2]**E. Behrends,*-structure and the Banach-Stone theorem*, Lecture Notes in Math. 736. Springer, Berlin, 1979. MR**547509 (81b:46002)****[3]**F. F. Bonsall and J. Duncan,*Complete normed algebras*, Springer, Berlin, 1973. MR**0423029 (54:11013)****[4]**C.-M. Cho and W. B. Johnson,*A characterization of subspaces**of**for which**is an**-ideal in*. Proc. Amer. Math. Soc.**93**(1985), 466-470. MR**774004 (86h:46026)****[5]**J. Diestel,*Sequences and series in Banach spaces*, Springer, Berlin, 1984. MR**737004 (85i:46020)****[6]**J. Dixmier,*Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert*, Ann. of Math.**51**(1950), 387-408. MR**0033445 (11:441e)****[7]**J. Duncan and S. A. R. Hosseiniun,*The second dual of a Banach algebra*, Proc. Royal Soc. Edinburgh**84**(1979), 309-325. MR**559675 (81f:46057)****[8]**P. Harmand and Å. Lima,*Banach spaces which are**-ideals in their biduals*, Trans. Amer. Math. Soc.**283**(1983), 253-264.**[9]**D. Li,*Quantitative unconditionality of Banach spaces**for which**is an**-ideal in*, Stud. Math. (to appear).**[10]**Å. Lima,*Intersection properties of balls and subspaces in Banach spaces*, Trans. Amer. Math. Soc.**227**(1977), 1-62. MR**0430747 (55:3752)****[11]**-,*On**-ideals and best approximation*, Indiana Univ. Math. J.**31**(1982), 27-36. MR**642613 (83b:46021)****[12]**D. Werner,*Remarks on**-ideals of compact operators*, Quart. J. Math. Oxford (to appear).**[13]**W. Werner,*Inner**-ideals in Banach-algebras*, 1988, submitted.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B20,
47B07,
47D15,
47D30

Retrieve articles in all journals with MSC: 46B20, 47B07, 47D15, 47D30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039261-1

Article copyright:
© Copyright 1991
American Mathematical Society