THE GOTTLIEB GROUP OF FINITE LINEAR QUOTIENTS
OF ODD DIMENSIONAL SPHERES

S. ALLEN BROUGHTON

(Communicated by Frederick R. Cohen)

Abstract. Let G be a finite, freely acting group of homeomorphisms of the odd-dimensional sphere S^{2n-1}. John Oprea has proven that the Gottlieb group of S^{2n-1}/G equals $Z(G)$, the centre of G. The purpose of this short paper is to give a considerably shorter, more geometric proof of Oprea's theorem in the important case where G is a linear group.

In [G1], [G2] Gottlieb introduced subgroups $G_n(X) \subseteq \pi_n(X)$ of the homotopy groups of a connected space X, which have come to be known as the Gottlieb groups of X. The group $G_1(X)$ is usually referred to as the Gottlieb group of X and has been extensively studied (cf., e.g., [Ga, L, P]). In [G1], Gottlieb provided the following characterization of $G_1(X)$. Let \tilde{X} be the universal cover of X and identify $\Pi \cong \pi_1(X)$ with the group of covering transformations in the usual way. Then, we have

Proposition 1. The Gottlieb group, $G_1(X)$, is the subgroup of Π consisting of all z which are equivariantly homotopic to the identity.

Remark. To show that z is in $G_1(X)$ we must find a homotopy $L_t : \tilde{X} \to \tilde{X}$, $0 \leq t \leq 1$, such that

\begin{align*}
 L_0 &= \text{id}, \\
 L_1 &= z
\end{align*}

and

\begin{align*}
 L_t g &= g L_t, \quad \text{for all} \ g \in \Pi \ \text{and for} \ 0 \leq t \leq 1.
\end{align*}

From this characterization it is clear that the Gottlieb group is a characteristic subgroup, lying in the centre of Π. In this paper we prove the following theorem.

Theorem. Let the finite group G act freely and linearly on the odd-dimensional sphere S^{2n-1}. Then, the Gottlieb group of the quotient space S^{2n-1}/G is isomorphic to $Z(G)$, the centre of G, under the canonical isomorphism of G with $\pi_1(S^{2n-1}/G)$.

Received by the editors January 8, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 55Q52, 57S17, 57S25.

Key words and phrases. Gottlieb group, linear group actions.

©1991 American Mathematical Society
0002-9939/91 $1.00 + .25 per page
In [O], J. Oprea has proven a more general theorem in which it is only assumed that \(G \) is a finite, freely acting group of homeomorphisms of \(S^{2n-1} \). The methods in [O] use rather complicated algebro-topological arguments because of the general nature of the action. The sole purpose of this paper is to show that if we restrict our attention to linear actions, a much simpler, geometric proof is possible. Before proceeding to the proof, we recall the following fact about linear representations of a finite group on a real vector space. For all the results on linear representations that we use, we refer to Isaacs's monograph [I1].

Proposition 2. Let the finite group \(G \) act linearly and irreducibly, over \(\mathbb{R} \), on the real vector space \(V \). Let \(\text{Cent}_G(V) \) denote the commuting algebra of the \(G \)-action on \(V \), i.e., the algebra of endomorphisms of \(V \) which commute with \(G \). Then, \(\text{Cent}_G(V) \) is a division algebra isomorphic to one of \(\mathbb{R} \), \(\mathbb{C} \), or \(\mathbb{H} \) (quaternions). Furthermore, \(\text{Cent}_G(V) \cong \mathbb{R} \) if and only if the representation of \(G \) on \(V \) is absolutely irreducible, i.e., the complex representation of \(G \) on \(C \otimes V \) is irreducible.

Proof of theorem. Suppose that the free action of \(G \) on the odd-dimensional sphere \(S^{2n-1} \) is induced by an orthogonal linear representation on the \(2n \)-dimensional real vector space \(V \). In the notation of Proposition 1, we take \(X = S^{2n-1}/G \), \(\bar{X} = S^{2n-1} \), and \(\Pi = G \). To prove the theorem we must produce, for each \(z \in Z(G) \), a homotopy \(L_t \) satisfying (1) and (2) above. If \(G \) consists of the identity map and the antipodal map, then a homotopy from the identity map to the antipodal map may be constructed by letting \(L_t \) be a path from \(I \) to \(-I \) in the unitary matrix group \(U(n) \), which is path-connected. We may now assume that \(G \) is not this group.

Let \(g \in G \) have order \(n \), the eigenvalues of \(g \) are all primitive \(n \)th roots of unity, otherwise some nonidentity power of \(g \) fixes a point. From this condition on the eigenvalues we get

\((3) \) The only possible involution in \(G \) is the antipodal map: \(v \mapsto -v \).

From the freeness of the \(G \)-action we also get

\((4) \) If \(W \subseteq V \) is a nonzero \(G \)-invariant subspace, then the restricted representation of \(G \) on \(W \) is faithful.

Write \(V = V_1 \oplus \cdots \oplus V_s \), an orthogonal direct sum of irreducible \(G \)-invariant subspaces over \(\mathbb{R} \). Suppose that the commuting algebra of one or more of the \(V_i \)'s is \(\mathbb{R} \). Then, by (3), (4), and Proposition 2, \(G \) is a group with only one involution and an absolutely irreducible faithful real representation. First, J. Malzan [M] and then M. Isaacs [12] (using simpler methods) have shown that such a group has order 2. In this case, \(G \) would consist of the identity map and the antipodal map, but we have already handled this possibility.

Let \(z \in Z(G) \). For \(1 \leq i \leq s \), let \(L_t^i \) be a path in \(\text{Cent}_G(V_i) \) starting at the identity and ending at \(z|_{V_i} \). Since we may assume that all of the centralizers \(\text{Cent}_G(V_i) \) are division algebras of real dimension at least two, we may
construct the paths so that for each t and i the map L_i^t is an invertible linear transformation of V_i. Define the homotopy L_t by

$$L_t(v) = M_t(v) / |M_t(v)|, \quad \text{for } v \in S^{2n-1},$$

where

$$M_t(v) = L_i^1(v_1) + \cdots + L_i^s(v_s),$$

$||$ denotes the norm in V, and $v = v_1 + \cdots + v_s$ is the decomposition of $v \in V$ induced by the decomposition of V into G-invariant subspaces. By construction, each M_t is invertible, so L_t is well-defined. Since the V_i's are G-invariant, then the equivariance condition (2) holds with L_t replaced by M_t. Since the norm is G-invariant and for each $g \in G$, $gM_t(v) = M_t(gv)$, then $|M_t(v)| = |gM_t(v)| = |M_t(gv)|$. It now follows that (1) and (2) hold for all L_t. All is now proven.

REFERENCES

Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use