Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The classification of solenoids


Authors: J. M. Aarts and R. J. Fokkink
Journal: Proc. Amer. Math. Soc. 111 (1991), 1161-1163
MSC: Primary 54H20; Secondary 54F15, 54F50, 54F65
DOI: https://doi.org/10.1090/S0002-9939-1991-1042260-7
MathSciNet review: 1042260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An elementary proof is presented of a classification theorem for solenoids.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. MR 954894 (89k:54092)
  • [2] J. M. Aarts and Z. Frolík, Homeomorphisms of $ Q$ and the orbit classification of flows, Rend. Circ. Mat. Palermo (2) 18 (1988), 16-25.
  • [3] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230. MR 0111001 (22:1869)
  • [4] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. I, Springer-Verlag, Berlin, 1963. MR 551496 (81k:43001)
  • [5] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197-209. MR 0173237 (30:3450)
  • [6] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960. MR 0121520 (22:12258)
  • [7] B. Parry and D. Sullivan, A topological invariant of flows on $ 1$-dimensional spaces, Topology 14 (1975), 297-299. MR 0405385 (53:9179)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 54F15, 54F50, 54F65

Retrieve articles in all journals with MSC: 54H20, 54F15, 54F50, 54F65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1042260-7
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society