Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A transitive map on $ [0,1]$ whose inverse limit is the pseudoarc


Authors: Piotr Minc and W. R. R. Transue
Journal: Proc. Amer. Math. Soc. 111 (1991), 1165-1170
MSC: Primary 54H20; Secondary 54F15, 58F08, 58F13
DOI: https://doi.org/10.1090/S0002-9939-1991-1042271-1
MathSciNet review: 1042271
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a transitive map on $ [0,1]$ so that the inverse limit of copies of $ [0,1]$ with $ f$ as the bonding map is a pseudoarc.


References [Enhancements On Off] (What's this?)

  • [1] M. Barge and J. Kennedy, Continuum theory and topological dynamics, Open problems in topology (J. van Mill and G. M. Reed, eds.) North-Holland, Amsterdam (to appear). MR 1078669
  • [2] M. Barge and J. Martin, Chaos, periodicity and snake-like continua, Trans. Amer. Math. Soc. 289 (1985), 355-365. MR 779069 (86h:58079)
  • [3] -, Dense orbits on the interval, Michigan Math. J. 34 (1987), 3-11. MR 873014 (88c:58031)
  • [4] -, The construction of global attractors, Proc. Amer. Math. Soc. (to appear). MR 1023342 (90m:58123)
  • [5] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729-742. MR 0027144 (10:261a)
  • [6] -, Snake-like continua, Duke Math. J. 18 (1951), 653-663. MR 0043450 (13:265a)
  • [7] G. W. Henderson, The pseudo-arc as an inverse limit with one binding map, Duke Math. J. 31 (1964), 421-425. MR 0166766 (29:4039)
  • [8] M. Hénon, A two dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77. MR 0422932 (54:10917)
  • [9] J. Kennedy, A transitive homeomorphism on the pseudoarc which is semiconjugate to the tent map, preprint. MR 1010412 (91k:54062)
  • [10] B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), 247-286.
  • [11] E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594. MR 0025733 (10:56i)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 54F15, 58F08, 58F13

Retrieve articles in all journals with MSC: 54H20, 54F15, 58F08, 58F13


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1042271-1
Keywords: Inverse limits, transitive map, pseudoarc
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society