LOWER BOUNDS FOR THE SOLUTIONS
IN THE SECOND CASE OF FERMAT'S LAST THEOREM

LE MAOHUA

Abstract. Let \(p \) be an odd prime. In this paper, we prove that if \(p \equiv 3 \pmod{4} \) and \(x, y, z \) are integers satisfying \(x^p + y^p = z^p, \ p | xyz, \ 0 < x < y < z, \) then \(y > 2^{-1/p} p^{6p-2} \) and \(z - x > \frac{1}{2} p^{6p-3} \).

Let \(p \) be an odd prime. In [1] and [2], Inkeri showed that if \(x, y, z \) are integers satisfying

\[
\begin{align*}
\text{(1)} \quad & x^p + y^p = z^p, \quad \gcd(x, y) = 1, \ p | xyz, \ 0 < x < y < z, \\
\end{align*}
\]

then \(y > \frac{1}{2} p^{3p-1} \) and \(z - x > (2p^{20/7})^p \). In this paper, we prove the following result:

Theorem. If \(p \equiv 3 \pmod{4} \) and \(x, y, z \) are integers satisfying (1), then \(y > 2^{-1/p} p^{6p-2} \) and \(z - x > \frac{1}{2} p^{6p-3} \).

Proof. It is a well-known fact that (1) is impossible for \(p = 3 \), so we may assume that \(p > 3 \). We first deal with the case that \(p | z \). Let \(\zeta \) be a \(p \)-th primitive root of 1. Let \(S \) be the set of nonzero squares \(\pmod{p} \), and let \(\theta = \prod_{i \in S} (x + y \zeta^i) \). Since \(S \) represents \(\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}(\sqrt{-p})) \), it follows that \(\theta \) is an algebraic integer in \(\mathbb{Q}(\sqrt{-p}) \), so \(\theta = A + B \sqrt{-p} \), where \(A, B \in \mathbb{Z} \). Note that \(\theta_0 = \prod_{i \in S} (1 - \zeta^i) \) is an algebraic integer in \(\mathbb{Q}(\sqrt{-p}) \) with norm \(p \); hence, it must be \(\pm \sqrt{-p} \). From

\[
\theta \equiv \begin{cases}
\theta_0 = \pm \sqrt{-p} \pmod{2}, & 2 \nmid x, \ 2 \nmid y, \\
\prod_{i \in S} 1 = 1 \pmod{2}, & 2 \nmid x, \ 2 | y, \\
\prod_{i \in S} \zeta^i = 1 \pmod{2}, & 2 | x, \ 2 \nmid y,
\end{cases}
\]

we find that \(A + B \sqrt{-p} \) is congruent modulo 2 to an element of \(\mathbb{Z}(\sqrt{-p}) \), so \(A, B \in \mathbb{Z} \). Further, since

\[
\theta \equiv \prod_{i \in S} (x - x \zeta^i) = 0 \pm x^{(p-1)/2} \sqrt{-p} \pmod{x + y},
\]

Received by the editors November 11, 1989 and, in revised form, March 27, 1990. 1980 Mathematics Subject Classification (1985 Revision). Primary 11D41.
we get
\[A \equiv 0 \pmod{x+y}. \]

Let \(p^a \mid z \). Classical relations due to Abel [4, p. 54] imply that
\[\begin{align*}
& x + y = p^{\alpha p - 1} d^p, \quad \frac{x^p + y^p}{x + y} = p b^p, \quad z = p^a \cdot a b,
\end{align*} \]
where \(a, b \) are positive integers satisfying \(p \nmid ab \) and \(2 \nmid b \). From the above, we have \(p b^p = A^2 + p B^2 \). Hence \(p \mid A, p \nmid B \), and
\[b^p = p A' + B^2, \]
where \(A' = A/p \). By (2) and (3), we get
\[A' \equiv 0 \pmod{p^a - 2}. \]

The factors \(x + y \zeta^i \) are pairwise relatively prime for \(1 \leq i \leq p-1 \), except for factors of \(1 - \zeta \). Therefore \(\prod_{i \in S} (x + y \zeta^i) = A + B \sqrt{-p} \) and \(\prod_{i \in S} (x + y \zeta^i) = A - B \sqrt{-p} \) are relatively prime, except for primes above \(p \). Recall that \(p \nmid B \).

We have \(\gcd(A, B) = 1 \). It also follows that \(A' \sqrt{-p} + B \) and \(A' \sqrt{-p} - B \) are relatively prime in \(\mathbb{Z}[\rho] \), where \(\rho = (-1 + \sqrt{-p})/2 \). Hence they are \(p \)th powers of ideals. Since the class number of \(\mathbb{Z}[\rho] \) is less than \(p \), it is prime to \(p \). Therefore \(A' \sqrt{-p} + B \) is the \(p \)th power of a number in \(\mathbb{Z}[\rho] \). It implies that
\[(6) \]
\[A' \sqrt{-p} + B = (X_1 + Y_1 \sqrt{-p})^p, \]
where \(X_1, Y_1 \in \frac{1}{2} \mathbb{Z} \). If \(X_1 + Y_1 \sqrt{-p} \notin \mathbb{Z}(\sqrt{-p}) \), then \(X_1 = u/2, \ Y_1 = v/2 \), with \(u, v \in \mathbb{Z} \) and \(u \equiv v \equiv 1 \pmod{2} \). By Waring’s formula [3, Formula 1.76], we get from (4) and (6) that \(u^2 + p v^2 = 4b \) and
\[2B = \left(\frac{u + v \sqrt{-p}}{2} \right)^p + \left(\frac{u - v \sqrt{-p}}{2} \right)^p \]
\[= \sum_{j=0}^{(p-1)/2} (-1)^j \frac{(p - j - 1)!}{(p - 2j)! j!} u^{p - 2j} b^j \equiv \sum_{j=0}^{(p-1)/2} (-1)^j \frac{(p - j - 1)!}{(p - 2j)! j!} \]
\[= \left(\frac{1 + \sqrt{5}}{2} \right)^p + \left(\frac{1 - \sqrt{5}}{2} \right)^p = L_p \pmod{2}, \]
where \(L_p \) is the \(p \)th Lucas number. Since \(L_p \equiv 0 \pmod{2} \) only if \(p = 3 \), it follows that \(X_1 + Y_1 \sqrt{-p} \notin \mathbb{Z}(\sqrt{-p}) \), and
\[(7) \]
\[X_1^2 + p Y_1^2 = b, \quad X_1, Y_1 \in \mathbb{Z}. \]

We get from (6) that
\[(8) \]
\[A' = \binom{p}{1} X_1^{p-1} Y_1 - \binom{p}{3} p X_1^{p-3} Y_1^3 + \cdots + (-1)^{(p-1)/2} \binom{p}{p} p^{(p-1)/2} Y_1^p. \]
Since \(p \nmid b \), we have \(p \nmid X_1 \) by (7), and hence

\[
Y_1 \equiv 0 \pmod{p^{\alpha p-3}}
\]

by (5) and (8). If \(Y_1 = 0 \), then \(A = 0, B = \pm 1 \), and \(b = 1 \) by (4). Since \((x^p + y^p)/(x+y) \geq 2^{p-2} + 1 \), it is impossible that \(p > 3 \). Therefore \(Y_1 \neq 0 \) and \(|Y_1| > p^{\alpha p-3} \) by (9), and \(z = p^\alpha ab > p^{2\alpha p + \alpha - 5} \) by (7). Note that \(\alpha \geq 3 \), by [5]. We obtain \(z > p^{6p-2} \). Using the same method, we can prove that \(y > p^{6p-2} \) or \(x > p^{6p-2} \) correspond to \(p | y \) or \(p | x \). Thus \(y > 2^{-1/p} p^{6p-2} \) since \(2^{1/p} y > z \).

Simultaneously, we have

\[
z - x = \frac{y^p}{z^{p-1} + xz^{p-2} + \cdots + x^{p-1}} > \frac{y^p}{pz^{p-1}} > \frac{y^p}{p(2^{1/p} y)^{p-1}}
\]

\[
= \frac{y}{2^{p-1/p} p} > \frac{1}{2} p^{6p-3}.
\]

The theorem is proved.

ACKNOWLEDGMENT

The author would like to thank the referee for his valuable suggestions.

REFERENCES

Research Department, Changsha Railway Institute, Changsha, Hunan, People’s Republic of China