requires an inaccessible

Authors:
Lee Stanley, Dan Velleman and Charles Morgan

Journal:
Proc. Amer. Math. Soc. **111** (1991), 1105-1118

MSC:
Primary 03E05; Secondary 03E35, 03E45, 03E55

DOI:
https://doi.org/10.1090/S0002-9939-1991-1049849-X

MathSciNet review:
1049849

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if there is a simplified -morass with linear limits and , then . Thus, assuming , this negative relation holds in if both and are (successor cardinals), since in this case, well-known arguments show there is a simplified -morass with linear limits. The contrapositive is that, assuming , the positive relation holds only if either or is (inaccessible).

**[D]**H. D. Donder,*Another look at gap-*morasses, Recursion Theory (A. Nerode and R. Shore, eds.), Proc. Sympos. in Pure Math., vol. 42, Amer. Math. Soc., Providence, R.I., 1985, pp. 223-236. MR**791060 (86k:03046)****[EHMR]**P. Erdos, A. Hajnal, A. Mate, and R. Rado,*Combinatorial set theory: Partition relations for cardinals*, North-Holland, 1984. MR**795592 (87g:04002)****[M]**T. Miyamoto,*Some results in forcing*, Doctoral Dissertation, Dartmouth College, 1987.**[SS1]**S. Shelah and L. Stanley,*A theorem and some consistency results in partition calculus*, Ann. Pure Appl. Logic**36**(1987), 119-152. MR**911579 (89d:03045)****[SS2]**-,*More consistency results in partition calculus*(to appear). [V1] D. Velleman,*Simplified morasses*, J. Symbolic Logic**49**(1984), 257-271.**[V2]**-,*Simplified morasses with linear limits*, J. Symbolic Logic**49**(1984), 1001-1021. MR**771773 (86f:03088)****[V3]**-,*Souslin trees constructed from morasses*, Axiomatic Set Theory (J. Baumgartner, D. Martin, and S. Shelah, eds.), Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 219-241. MR**763903 (86b:03066)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
03E05,
03E35,
03E45,
03E55

Retrieve articles in all journals with MSC: 03E05, 03E35, 03E45, 03E55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1049849-X

Article copyright:
© Copyright 1991
American Mathematical Society