Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

On the convergence in $ \mathcal{S}'$


Author: Stevan Pilipović
Journal: Proc. Amer. Math. Soc. 111 (1991), 949-954
MSC: Primary 46F05
MathSciNet review: 1050022
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following assertion: Let $ {T_j},j \in \mathbb{N}$, be a sequence in $ \mathcal{S}'$ such that $ {T_j} * \phi $ converges to 0 in $ \mathcal{S}'$ as $ j \to \infty $, for any $ \phi \in \mathcal{D}$. Then $ {T_j} \to 0$ in $ \mathcal{S}'$ as $ j \to \infty $.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F05

Retrieve articles in all journals with MSC: 46F05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-1050022-X
PII: S 0002-9939(1991)1050022-X
Keywords: Tempered distributions
Article copyright: © Copyright 1991 American Mathematical Society