On the convergence in
Author:
Stevan Pilipović
Journal:
Proc. Amer. Math. Soc. 111 (1991), 949-954
MSC:
Primary 46F05
DOI:
https://doi.org/10.1090/S0002-9939-1991-1050022-X
MathSciNet review:
1050022
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove the following assertion: Let , be a sequence in
such that
converges to 0 in
as
, for any
. Then
in
as
.
- [1] J. Dixmier and P. Malliavin, Factorisation de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. 102 (1978), 305-330. MR 517765 (80f:22005)
- [2] A. Friedman, Generalized functions and partial differential equations, Prentice-Hall, Englewood Cliffs, NJ, 1963. MR 0165388 (29:2672)
- [3] K. Keller, Some convergence properties of convolutions, Studia Math. 77 (1983), 87-94. MR 738046 (85h:46059)
- [4]
H. Petzeltová and P. Vrbová, Factorization in the algebra of rapidly decreasing functions on
, Comment. Math. Univ. Carolinae 19 (1978), 489-499. MR 508956 (80f:46056)
- [5] L. A. Rubel, W. A. Squires, and B. A. Taylor, Irreducibility of certain entire functions with applications to harmonic analysis, Ann. of Math. (2) 108 (1978), 553-567. MR 512433 (80d:32003)
- [6] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. MR 0209834 (35:730)
- [7] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 0225131 (37:726)
- [8] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979. MR 564116 (80j:46062b)
- [9] J. Voigt, Factorization in some Fréchet algebras of differentiable functions, Studia Math. 77 (1984), 333-348. MR 741451 (85m:46051)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46F05
Retrieve articles in all journals with MSC: 46F05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1991-1050022-X
Keywords:
Tempered distributions
Article copyright:
© Copyright 1991
American Mathematical Society