COMPLETELY BOUNDED MAPS
BETWEEN THE PREDUALS OF VON NEUMANN ALGEBRAS

HIROYUKI OSAKA

(Communicated by John B. Conway)

Abstract. Let M and N be von Neumann algebras. Then $B[M_*, N_*] = CB[M_*, N_*]$ if and only if either M is strictly finite of type I or N is finite-dimensional.

0. Introduction

In the recent development of the theory of operator algebras, it has been recognized that completely bounded maps play an important role in the study of the matricial structure of C^*-algebras (cf. [2], [12], [14]). It is of interest to know the difference between complete boundedness and mere boundedness. Smith showed in [9] that every bounded map from a C^*-algebra A to a C^*-algebra B is completely bounded if and only if either A is finite-dimensional or B is subhomogeneous. Huruya and Tomiyama showed the same result in a slightly different formulation in [3]. Recently, Effros and Ruan have systematically investigated matricially normed spaces and shown that any bounded linear map from the dual of a C^*-algebra A into a C^*-algebra B is completely bounded [1]. On the other hand, Ruan has shown that the only completely bounded map from a C^*-algebra A into the dual of a C^*-algebra B is the zero map [8]. Compared with the case of completely positive maps [10], these are contrasting results.

In this paper we shall investigate the relationship of the set of bounded maps to the subspace of completely bounded maps between the preduals of von Neumann algebras.

1. Preliminaries

We denote by M_n the $n \times n$ matrix algebra over the complex number field \mathbb{C}. Let A be a C^*-algebra and M a von Neumann algebra. Let $M_n(A)$ be the C^*-algebra of all $n \times n$ matrices $a = [a_{i,j}]$ with entries in A. The $n \times n$
matrix space over the dual space \(A^* \), \(M_n(A^*) = \{ f = [f_{i,j}]; f_{i,j} \in A^* \} \) is regarded as the dual of \(M_n(A) \) by

\[
\langle [a_{i,j}], [f_{i,j}] \rangle = \sum_{i,j=1}^n f_{i,j}(a_{i,j}),
\]

where \([a_{i,j}] \in M_n(A)\) and \([f_{i,j}] \in M_n(A^*)\). Let \(M_* \) be the predual of \(M \).

Let \(E \) and \(F \) be \(C^* \)-algebras, the duals of \(C^* \)-algebras, or the preduals of von Neumann algebras. For a linear map \(\varphi: E \to F \), we define \(\varphi \otimes id_n: M_n(E) \to M_n(F) \) by \((\varphi \otimes id_n)([a_{i,j}]) = [\varphi(a_{i,j})] \). If \(\sup_n \|\varphi \otimes id_n\| < \infty \), we say that \(\varphi \) is completely bounded. If \(\varphi \) is completely bounded, we put the norm \(\|\varphi\|_{cb} = \sup_n \|\varphi \otimes id_n\| \). We denote by \(B[E,F] \) and \(CB[E,F] \) the set of bounded linear maps and the subspace of completely bounded maps of \(E \) to \(F \), respectively.

2. MAIN RESULT

Let \(M \) and \(N \) be von Neumann algebras. The following lemma is a slight modification of [3, Lemma 1].

Lemma 2.1. Let \(M \) be a von Neumann algebra containing a sequence \(\{a_i\}_{i=1}^\infty \) of positive elements with \(\|a_i\| = 1 \) and \(a_ia_j = a_ja_i = 0 \) (\(i \neq j \)). Let \(B \) and \(C \) denote von Neumann subalgebras generated by \(\{a_i\}_{i=1}^n \) and \(\{a_i\}_{i=n+1}^\infty \), respectively. Then, for the integer \(m = 2^n \), there exist an element \(b_n \in B \otimes M_n \) and a \(\sigma \)-weakly continuous linear map \(\Phi_n: M \to M_m \) such that \(\|b_n\| \leq 1 \), \(\|\Phi_n\| \leq n^{-1/8} \), \(\Phi_n|C \equiv 0 \), and \(\|\Phi_n \otimes id_m\| \geq 2^{-3/2}n^{3/8} \).

Proof. At first we choose elements \(c_1, \ldots, c_n \) of \(M_m \) such that \(\|c_i\| = 1 \) and

\[
\|\sum_{i=1}^n \alpha_i c_i\| \leq \left(2\sum_{i=1}^n |\alpha_i|^2\right)^{1/2}
\]

for any \(\alpha_i \in C \), \(1 \leq i \leq n \) [6], [16]. We define the map \(\varphi_n: L^\infty(n) \to M_m \) by

\[
\varphi_n(x) = \sum_{i=1}^n x(i)/(2n^{5/4})^{1/2}c_i, \quad x \in L^\infty(n),
\]

where \(x(i) \) means the \(i \)th component of \(x \). By the above inequality, we have

\[
\|\varphi_n(x)\| \leq \left(2\sum_{i=1}^n |x(i)|^2/(2n^{5/4})\right)^{1/2} \leq n^{-1/8}\|x\|,
\]

so that \(\|\varphi_n\| \leq n^{-1/8} \).

Let \(d_n = (1/2) \sum_{i=1}^n \delta_i \otimes c_i \), where \(\delta_i \) is the element of \(L^\infty(n) \) such that \(\delta_i(k) = \delta_{i,k} \). Then \(\|d_n\| = 1/2 \) and

\[
(\varphi_n \otimes id_m)(d_n) = 2^{-3/2}n^{-5/8}\sum_{i=1}^n c_i \otimes c_i.
\]

Here we make use of the unit vector \(z \) in \(C^m \otimes C^m \) such that \((c_i \otimes c_i)(z) = z \) for all \(i \) constructed in Loebl [6]. Hence we have

\[
\|\varphi_n\|_{cb} \geq \|(\varphi_n \otimes id_m)(d_n)\| \geq 2^{-3/2}n^{3/8}.
\]
Suppose that \(M \) acts on Hilbert space \(\mathcal{H} \). Then \(s(a_i)s(a_i) = s(a_j)s(a_j) = 0 \) \((i \neq j)\), where \(s(a_i) \) is the support projection of \(a_i \) in the von Neumann algebra generated by \(\{a_i\}_{i=1}^{\infty} \). Since \(a_i \geq 0 \) and \(\|a_i\| = 1 \) are assured, there exists a unit vector \(\xi_i \in s(a_i)\mathcal{H} \) such that \(1/2 < \omega_{\xi_i}(a_i) \leq 1 \) and \(\omega_{\xi_i}(a_j) = 0 \) \((i \neq j)\), where \(\omega_{\xi_i}(a_i) = (a_i\xi_i)(\xi_i) \). If \(\omega_{\xi_i}(a_i) \neq 1 \), we put \(\eta_i = \xi_i/|\omega_{\xi_i}(a_i)|^{1/2} \); then \(\omega_{\eta_i}(a_i) = 1 \) and \(1 \leq \|\omega_{\eta_i}\| < 2 \). Hence there exists a family of normal linear functionals \(\{\rho_j\}_{j=1}^{\infty} \) on \(M \) such that \(\rho_i \geq 0 \), \(\|\rho_i\| \leq 2 \), and \(\rho_i(a_j) = \delta_{i,j} \) \((1 \leq i \leq n \) and \(1 \leq j < \infty)\).

We now define a completely positive linear map \(\varphi: \ell^\infty(n) \to M \) and a \(\sigma \)-weakly continuous linear map \(\psi: M \to \ell^\infty(n) \) by

\[
\varphi(\alpha_1, \ldots, \alpha_n) = \sum_{i=1}^{n} \alpha_i a_i \quad \text{and} \quad \psi(a) = \frac{1}{2}(\rho_1(a), \ldots, \rho_n(a)).
\]

Both maps are contractive and, \(2\psi\varphi \) is the identity map on \(\ell^\infty(n) \).

Put \(\Phi_n = \varphi_n\psi \) and \(b_n = (\varphi \otimes \text{id}_m)(2d_n) \in B \otimes M_m \). Then we have \(\|b_n\| \leq 1 \), \(\|\Phi_n\| \leq \|\varphi_n\|\|\psi\| \leq n^{-1/8} \), \(\Phi_n|C = 0 \), and

\[
2^{-3/2} n^{3/8} \leq \|(\varphi_n \otimes \text{id}_m)(d_n)\| = \|(\varphi_n(2\psi\varphi) \otimes \text{id}_m)(d_n)\| = \|((\varphi_n \psi \otimes \text{id}_m)(\varphi \otimes \text{id}_m)(2d_n)\| = \|((\Phi_n \otimes \text{id}_m)(b_n)\|.
\]

Definition 2.2. A finite type I von Neumann algebra \(N \) is called **strictly finite** if \(N = \bigoplus_{i=1}^{n} N_i \), where \(N_i \) is of type \(I_{n(i)} \) and \(\sup_i n(i) < \infty \).

Remark 2.3. From the above definition, if \(N \) is not a strictly finite von Neumann algebra of type I, then we can embed \(\bigoplus_{n=1}^{\infty} M_{2^n} \) into \(N \) as a von Neumann subalgebra (cf. [13]).

Lemma 2.4. Suppose that \(M \) is not a strictly finite von Neumann algebra of type I and \(N \) is an infinite-dimensional von Neumann algebra. Then there exists a \(\sigma \)-weakly continuous bounded linear map \(\Phi \) of \(N \) into \(M \) which is not completely bounded.

Proof. Let \(a \) be a self-adjoint element of \(N \) with infinite spectrum [7] and let \(W^*(a) \) be the von Neumann subalgebra generated by \(a \). By an elementary spectral argument, we can find a commuting sequence \(\{a_{i,j}\}_{i,j=1}^{\infty} \) of positive elements of \(W^*(a) \) with disjoint supports and \(\|a_{i,j}\| = 1 \). For each \(n \in \mathbb{N} \), let \(A_n \) be the von Neumann subalgebra generated by \(\{a_{i,n}\}_{i=1}^{n} \) and let the integer \(m = 2^n \). By Lemma 2.1, there exist an element \(b_n \in A_n \otimes M_m \) and a \(\sigma \)-weakly continuous linear map \(\Phi_n \) of \(N \) into \(M_m \) such that \(\|b_n\| \leq 1 \), \(\|\Phi_n\| \leq n^{-1/8} \), \(\Phi_n|A_k \equiv 0 \) \((k \neq n)\), and \(\|((\Phi_n \otimes \text{id}_m)(b_n)\| \geq 2^{-3/2} n^{3/8} \).

Now we put \(\Phi = \bigoplus_{n=1}^{\infty} \Phi_n \); then \(\|\Phi\| = \sup_n \|\Phi_n\| \leq 1 \). Hence \(\Phi \) is a \(\sigma \)-weakly continuous bounded linear map \(N \) into \(\bigoplus_{n=1}^{\infty} M_m \). Since \(M \) is not
strictly finite of type I, we can embed $\bigoplus_{n=1}^{\infty} M_m$ into M as a von Neumann subalgebra. Hence Φ is a σ-weakly continuous bounded linear map of N into M.

If Φ is completely bounded, we have $\|\Phi\|_{cb} \geq \|\Phi W^*(a)\|_{cb}$. For each $k \in \mathbb{N}$, it is easy to see that $\Phi \otimes id_k = \bigoplus_{n=1}^{\infty} \Phi_n \otimes id_k$, so $\|\Phi \otimes id_k\| = \sup_n \|\Phi_n \otimes id_k\|$. Since $\|\Phi_n \otimes id_m\| \geq 2^{-3/2} n^{3/8}$ is assured by Lemma 2.1, we have

$$\|\Phi\|_{cb} \geq \|\Phi A_n\|_{cb} \geq 2^{-3/2} n^{3/8}$$

for each $n \in \mathbb{N}$.

Hence, Φ is not completely bounded. \square

Theorem 2.5. Let M and N be two von Neumann algebras. Then the following assertions are equivalent:

1. $B[M_*, N_*] = CB[M_*, N_*]$
2. Either M is strictly finite of type I or N is finite-dimensional.

Proof. (1) \rightarrow (2): It follows from the previous lemma.

(2) \rightarrow (1): It follows from Smith's result. \square

Corollary 2.6. Let A and B be C^*-algebras. Then $B[A^*, B^*] = B[A^*, B^*]$ if and only if either A is subhomogeneous or B is finite-dimensional.

ACKNOWLEDGMENT

The author would like to express his hearty thanks to Professor S. Watanabe for his many valuable suggestions and advice and to Professor T. Huruya for much valuable advice and encouragement.

REFERENCES

Department of Mathematics, Tokyo Metropolitan University, Fukasawa, Setagaya-ku 158, Tokyo, Japan