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A CHARACTERIZATION OF THE DUAL
OF THE CLASSICAL LORENTZ SEQUENCE SPACE d(w , q)
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(Communicated by J. Marshall Ash)

Abstract. A new proof is given that regularity of w implies that the dual of

the classical Lorentz sequence space d(w , q) is the nonclassical d(w~9 'q , q),

where \/q + i/q = 1 . It is also shown that regularity is necessary for this

equality to hold.

I. Introduction

In this paper we study the topological dual of the classical Lorentz sequence

spaces.

If 0 < # < oo, w = (wn)™=x  is a nonincreasing sequence of positive real

numbers with wx = 1 , ¿~^Li wn = °° > an(^ ^mn wn = ® > ̂ ne classical Lorentz

sequence space d(w , q) is defined as

d(w,q)=lx = (x„)Zi ■ IML.« = f ¿COX J      < oo \ ,

where (x*n) is the nonincreasing rearrangement of (\xn\). The sequence (wn)

is said to be regular if there is a constant C such that Yl"=\ wi = Cnwn for

every positive integer n .

In [1], Allen showed, using a result of Garling [2], that if (wn) is regular and

1 < q < oo , then the dual of d(w , q) is d(w~g /q, q), where q = q/(q - 1)

and w~q 'q — (w~q lq). Here we give a shorter direct proof of this fact as well

as a proof that the regularity condition is necessary. Our result is the following:

Theorem 1. Let 1 < q < oo, w = (wn) be a nonincreasing sequence of positive

real numbers with wx = 1, ]C^Li w„ = °° • and hmn wn = 0. A necessary and

sufficient condition for the topological dual of d(w , q) to be d(w~q 'q, q) is

that w is regular.
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II. Proof of Theorem 1

We will use the following lemma:

Lemma 2. Let w - (wn) and b = (bn) be nonnegative, nonincreasing sequences,

and assume that w is regular. If 1 < q < oo, n is a positive integer and j(i)

is a permutation of I, ... , An - 1, then

4n-l , ln-\      , ,

(2.1) £>>;/^(, < C £>>;-< ,
i=ln i=n

where C is independent of n .

From now to the end of the paper, C will be a constant whose value may

change from line to line.

From the regularity of (w¿) and the fact that w¡ is nonincreasing, we have

In 2n-1

nWn ̂J2Wi~ 2nCwin ̂ 2C J2 Wi >
i=\ i=n

and from this it follows that wn < Cw4n . Using the monotonicity of b and

w and these inequalities, we see that the left side of (2.1) is bounded by

?'4n-l /h     \q'   In ln-\   , ^     N q

(£0 e%,^? e-.ícj: 211    ' W:

By the monotonicity of b and w , the last term is bounded by the right side of

(2.1); this proves the lemma.

To prove the sufficiency part of Theorem 1, assume that w is regular. Since

Holder's inequality implies that d(w~q /q, q) c d(w, q)*, it is sufficient to

prove that d(w , q)* c d(w'q 'q, q'). To do this suppose that <f> e d(w , q)*

and 4>(e¡) = b¡, where ei denotes the vector (0, ... , 0, 1, 0... ) with the 1 as

the / th coordinate. We may assume without loss of generality that (b¡) is a

nonincreasing sequence.

Fix n and let dk — 1  for 1 < k < n and dk = 0 for k > n. Then with

ak = dk(bk/wk)l/{q-l),wehave

¿>>-"'/? = ¿a,A- < II^HIIflll = IMI (Í2(dk(bk/wk)q');w)     .
/=i i=i \i=i /

Therefore, to prove that (b¡) belongs to d(w~q 'q , q) we need to prove only

that there exists a constant C independent of n such that

(2.2) £(dk(bk/wk)q');Wl<C±bq'w-q'/q.
;'=1 1=1

To prove (2.2), let j(i) be the permutation of I, ... , n such that

(2-3) JZ(dk(bk/wk)qriWi = ¿(è>/«/,(0 ,
i=i ¡=i
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and let j(i) = i for i > n. For n = 1, inequality (2.2) is trivial; for n > 1

let L be the greatest integer such that 2 < n . Then the right side of (2.3) is

bounded by
L   lk+x-\

(bx/wx)q wj(x) + Y, £ (bi/wfwj^.
k=l   i=2-

Applying Lemma 2 to the second term shows that it is bounded by the right

side of (2.2). This completes the sufficiency proof.

To prove the necessity, let Yn be the set of all z with z* = w¡ for 1 < i < 2n

and zi — 0 for i > 2n . Let

*-=í¿¡tj>=¿ (H(fr')-
Since by hypothesis d(w~q 'q, q) = d(w , q)*, d(w~q lq, q) is a locally con-

vex space. From this and the fact that x" is a convex combination of elements

with norm (¿~^¡1\ wi)l/9 > we have

.     (In        \   (In ,    \ »/«' (In        \ »/«'

Since iü¿ is nonincreasing,

2n ,

;=1

and we get (YÜ¡1\ wi)l/9 < 2C(nwn)l,q , which implies the regularity.
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