THE HYPERSPACES OF SUBCONTINUA OF THE PSEUDO-ARC AND OF SOLENOIDS OF PSEUDO-ARCS ARE CANTOR MANIFOLDS

PAWEL KRUPSKI

(Communicated by James E. West)

Abstract. New proofs of the above facts are based on specific homogeneity properties of the pseudo-arc and of solenoids of pseudo-arcs.

The reader is referred to [5] for hyperspace theory. It is known that if X is the pseudo-arc or a solenoid of pseudo-arcs (see [7] for the definition), then the hyperspace $C(X)$ of all nonvoid subcontinua of X is 2-dimensional. It is proved in [6] that if X is the pseudo-arc, then $C(X)$ is also a Cantor manifold, i.e., no 0-dimensional subset separates $C(X)$. In [2] a general theorem is presented that $C(X)$ has this property for an arbitrary metric, nondegenerate continuum X. Our proof of the theorem in the title is an application of the following result [3].

Lemma 1. If X is an n-dimensional, locally compact, connected, homogeneous, metric space, then no $(n-2)$-dimensional subset separates $X (n \geq 1)$.

Lemma 2. If a dense, connected subset of a metric separable space X is separated by no n-dimensional subset, then the space X has the same property. □

(1) Let X be the pseudo-arc. To show that $C(X)$ is a Cantor manifold it suffices to observe, by Lemmas 1 and 2, that the subspace $Y \subset C(X)$ of all nondegenerate, proper subcontinua of X is connected, locally compact, homogeneous (see [1]), as well as 2-dimensional and dense.

(2) Let X be a solenoid of pseudo-arcs with the continuous decomposition D into pseudo-arcs such that X/D is a solenoid S. The set D as a subspace of $C(X)$ is homeomorphic to S. As in (1) the open subspace Y of $C(X)$ is connected and dense. The set $Y\setminus D$ is dense in Y and is the union of two disjoint, open, connected, 2-dimensional subsets $M = \{y \in Y: d \neq y \subset d \in D\}$.
and \(N = \{ y \in Y : d \neq y \supset d \in D \} \). It follows from [4] and from properties of solenoids of pseudo-arcs [7] that for every pair \(y_1, y_2 \in M(y_1, y_2 \in N) \) there exists a homeomorphism \(h : X \to X \) such that \(h(y_1) = h(y_2) \). The induced homeomorphism \(\hat{h} : C(X) \to C(X) \) satisfies \(\hat{h}(M) = M, \hat{h}(N) = N \) and \(\hat{h}(y_1) = y_2 \), so both \(M \) and \(N \) are homogeneous and, by Lemma 1, no 0-dimensional subset separates neither \(M \) nor \(N \). Suppose a 0-dimensional subset \(C \) separates \(Y \). Without loss of generality we may assume that \(C \) is a closed subset of \(Y \). It means \(Y \setminus C = A \cup B \), where \(A, B \) are nonvoid, disjoint and open subsets of \(C(X) \). In view of the above properties of \(M \) and \(N \) we may assume \(M \subset A \) and \(N \subset B \). Thus \(C \subset D \). If there is \(d \in D \setminus C \), then some order arc \(\alpha \subset C(X) \) passing through \(d \) joins \(M \) and \(N \), which is impossible, since \(\alpha \cap D = \{ d \} \) and \(C \) separates \(Y \) between \(M \) and \(N \). Therefore \(C = D \), hence \(C \) is not 0-dimensional, a contradiction.

Remark. A similar proof works for \(X \) being a solenoid. However in this case \(C(X) \) is the cone over \(X \), which is evidently a Cantor manifold.

References