Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The Rademacher cotype of operators from $ l\sp N\sb \infty$


Authors: S. J. Montgomery-Smith and M. Talagrand
Journal: Proc. Amer. Math. Soc. 112 (1991), 187-194
MSC: Primary 46B20; Secondary 47B10, 47B37, 60G99
DOI: https://doi.org/10.1090/S0002-9939-1991-1043416-X
MathSciNet review: 1043416
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for any operator $ T:l_\infty ^N \to Y$, where $ Y$ is a Banach space, its cotype 2 constant, $ {K^{(2)}}(T)$, is related to its $ (2,1)$-summing norm, $ {\pi _{2,1}}(T)$, by

$\displaystyle {K^{(2)}}(T) \leq c\operatorname{log} \operatorname{log} N{\pi _{2,1}}(T).$

Thus, we can show that there is an operator $ T:C(K) \to Y$ that has cotype 2, but is not $ 2$-summing.

References [Enhancements On Off] (What's this?)

  • [C] J. Creekmore, Type and cotype in Lorentz 𝐿_{𝑝𝑞} spaces, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 2, 145–152. MR 707247
  • [H] Richard A. Hunt, On 𝐿(𝑝,𝑞) spaces, Enseignement Math. (2) 12 (1966), 249–276. MR 0223874
  • [J] G. J. O. Jameson, Relations between summing norms of mappings of 𝑙ⁿ_{∞}, Math. Z. 194 (1987), no. 1, 89–94. MR 871220, https://doi.org/10.1007/BF01168007
  • [K] S. Kwapień, On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193–201. (errata insert). MR 0278090
  • [LdT] Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015
  • [LT1] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
  • [LT2] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
  • [Ma1] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace $ {L^p}$, Astérisque 11 (1974).
  • [Ma2] -, Type et cotype dans les espaces munis de structures locales inconditionelles, Seminaire Maurey-Schwartz, 1973-74, Exp. 24-25.
  • [Mo1] S. J. Montgomery-Smith, The cotype of operators from $ C(K)$, Ph.D. thesis, Cambridge, August 1988.
  • [Mo2] S. J. Montgomery-Smith, The Gaussian cotype of operators from 𝐶(𝐾), Israel J. Math. 68 (1989), no. 1, 123–128. MR 1035886, https://doi.org/10.1007/BF02764974
  • [P1] Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 829919
  • [P2] Gilles Pisier, Factorization of operators through 𝐿_{𝑝∞} or 𝐿_{𝑝1} and noncommutative generalizations, Math. Ann. 276 (1986), no. 1, 105–136. MR 863711, https://doi.org/10.1007/BF01450929
  • [T] Michel Talagrand, The canonical injection from 𝐶([0,1]) into 𝐿_{2,1} is not of cotype 2, Banach space theory (Iowa City, IA, 1987) Contemp. Math., vol. 85, Amer. Math. Soc., Providence, RI, 1989, pp. 513–521. MR 983403, https://doi.org/10.1090/conm/085/983403

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 47B10, 47B37, 60G99

Retrieve articles in all journals with MSC: 46B20, 47B10, 47B37, 60G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1043416-X
Article copyright: © Copyright 1991 American Mathematical Society