Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A lower bound for the spectrum of the Laplacian in terms of sectional and Ricci curvature


Author: Alberto G. Setti
Journal: Proc. Amer. Math. Soc. 112 (1991), 277-282
MSC: Primary 58G25
DOI: https://doi.org/10.1090/S0002-9939-1991-1043421-3
MathSciNet review: 1043421
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be an $ n$-dimensional, complete, simply connected Riemannian manifold. In this paper we show that if the sectional curvature is bounded above by $ - k \leq 0$ and the Ricci curvature is bounded above by $ - \alpha \leq 0$, then the spectrum of the Laplacian on $ M$ is bounded below by $ [\alpha + (n - 1)(n - 2)k]/4$. This improves a previous result due to H. P. McKean.


References [Enhancements On Off] (What's this?)

  • [1] J. Chavel, Eigenvalues in Riemannian geometry, Academic Press, Orlando, 1984. MR 768584 (86g:58140)
  • [2] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian in Problems in analysis, a symposium in honor of S. Bochner, Princeton University Press, Princeton, 1970, 195-199. MR 0402831 (53:6645)
  • [3] S. Y. Cheng, Eigenfunctions and eigenvalues of Laplacian, Proc. Symp. Pure Math. 27 (1975), 185-193. MR 0378003 (51:14172)
  • [4] H. P. McKean, An upper bound to the spectrum of $ \Delta $ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359-366. MR 0266100 (42:1009)
  • [5] R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48-79. MR 705991 (84m:58138)
  • [6] S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975), 487-507. MR 0397619 (53:1478)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25

Retrieve articles in all journals with MSC: 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1043421-3
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society