Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A criterion on a subdomain of the disc for its harmonic measure to be comparable with Lebesgue measure


Author: A. L. VolЬberg
Journal: Proc. Amer. Math. Soc. 112 (1991), 153-162
MSC: Primary 31A15; Secondary 30C85
DOI: https://doi.org/10.1090/S0002-9939-1991-1045152-2
MathSciNet review: 1045152
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A subdomain $ O$ of the disc $ \mathbb{D}$ is called a boundary layer if $ \omega (O, \cdot ) \geq \alpha \cdot m$, where $ \omega (O, \cdot )$ is the harmonic measure of $ O$. The metric criterion in terms of $ \partial O$ is given for the case when $ \alpha $ is near 1.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Borichev and A. L. Volberg, Uniqueness theorems for almost analytic functions, Algebra and Analysis 1 (1989), 146-177. (Russian) MR 1015338 (90k:30090)
  • [2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, 1967. MR 0225986 (37:1576)
  • [3] M. Essèn, On minimal thinness, reduced functions and Green potentials, Upp. Univ. Dep. Math., no. 13, 1989.
  • [4] J. E. Thomson, Approximation in the mean by polynomials, Ann. of Math. (2) (to appear). MR 1109351 (93g:47026)
  • [5] A. L. Volberg, The logarithm of an almost analytic function is summable, Soviet Math. Dokl. 26 (1982), 238-243.
  • [6] A. L. Volberg and B. Joricke, Summability of the logarithm of an almost analytic function and a generalizations of the Levinson-Cartwright theorem, Mat. Sb. (N.S.) 130 (1986), 335-348; English transl.: Math. USSR-Sb. 58 (1987), 337-349. MR 865765 (87k:30060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31A15, 30C85

Retrieve articles in all journals with MSC: 31A15, 30C85


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1045152-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society