Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Multiple solutions for the $ p$-Laplacian under global nonresonance

Authors: Manuel A. del Pino and Raúl F. Manásevich
Journal: Proc. Amer. Math. Soc. 112 (1991), 131-138
MSC: Primary 34B15
MathSciNet review: 1045589
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Via the study of a simple Dirichlet boundary value problem associated with the one-dimensional $ p$-Laplacian, $ p > 1$, we show that in globally nonresonant problems for this differential operator the number of solutions may be arbitrarily large when $ p \in (1,\infty )\backslash \{ 2\} $. From this point of view $ p = 2$ turns out to be a very special case.

References [Enhancements On Off] (What's this?)

  • [1] A. Anane and J. P. Gossez, Strongly nonlinear elliptic problems near resonance: A variational approach, preprint. MR 1070239 (91h:35121)
  • [2] L. Boccardo, P. Drabek, D. Giachetti, and M. Kucera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083-1103. MR 857742 (88f:34024)
  • [3] M. del Pino, M. Elgueta, and R. Manásevich, A homotopic deformation along $ p$ of a LeraySchauder degree result and existence for $ (\vert u'{\vert^{p - 2}}u')' + f(t,u) = 0,u(0) = u(T) = 0$, J. Differential Equations (1989).
  • [4] -, Sturm's comparison theorem and a Hartman's type oscillation criterion for $ (\vert u'{\vert^{p - 2}}u')' + a(t)\vert u{\vert^{p - 2}}u = 0$, preprint.
  • [5] P. Drabek, Ranges of $ a$-homogeneous operators and their perturbations, Časopis Pěst. Mat. 105 (1980), 167-183. MR 573109 (81g:47066)
  • [6] M. Guedda and L. Veron, Bifurcation phenomena associated to the $ p$-Laplace operator, Trans. Amer. Math. Soc. 310 (1988), 419-431. MR 965762 (89j:35024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B15

Retrieve articles in all journals with MSC: 34B15

Additional Information

Keywords: Nonresonance, multiple solutions
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society