Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A certain class of triangular algebras in type $ {\rm II}\sb 1$ hyperfinite factors

Author: Richard Baker
Journal: Proc. Amer. Math. Soc. 112 (1991), 163-169
MSC: Primary 46L35; Secondary 47D25
MathSciNet review: 1049840
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be the standard triangular UHF algebra in a UHF algebra $ A$, where the rank of $ A$ is a strictly increasing sequence of positive integers. Let $ M$ be the type $ II_{1}$ hyperfinite factor defined as the weak closure of $ A$ in the tracial representation of $ A$. Define $ T$ to be the weak closure of $ S$ in this representation. Then $ T$ is a reflexive, maximal weakly closed triangular algebra in $ M$. Moreover, $ T$ is irreducible relative to $ M$. We exhibit a strongly closed sublattice $ L$ of $ \operatorname{lat} T$ such that $ T = \operatorname{alg} L$.

References [Enhancements On Off] (What's this?)

  • [L] A. I. Loginov and S. Šul'man, Hereditary and intermediate reflexivity of $ {W^ * }$-algebras, Math. USSR Izvistija 9 (1975), 1189-1201.
  • [MVN] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. Math. 44 (1943), 716-808. MR 0009096 (5:101a)
  • [P] S. Power, On ideals of nest subalgebras of $ {C^ * }$-algebras, Proc. London Math. Soc. 50 (1985), 314-332. MR 772716 (86d:47057)
  • [SV] S. Stratila and D. Voiculescu, Representations of AF-algebras and of the group $ U(\infty )$, Lecture Notes in Math., vol. 486, Springer-Verlag, Berlin and New York, 1975. MR 0458188 (56:16391)
  • [T] M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979. MR 548728 (81e:46038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L35, 47D25

Retrieve articles in all journals with MSC: 46L35, 47D25

Additional Information

Keywords: Triangular algebras, hyperfinite factors
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society