Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the class $ {\bf A}\sb {1,\aleph\sb 0}$

Author: Bebe Prunaru
Journal: Proc. Amer. Math. Soc. 112 (1991), 45-51
MSC: Primary 47A65; Secondary 47A15, 47D27
MathSciNet review: 1055779
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The solvability of certain systems of simultaneous equations in the predual of a dual operator algebra is studied. The main result is a geometric criterion for membership in the class $ {A_{1,{\aleph _0}}}$.

References [Enhancements On Off] (What's this?)

  • [1] H. Bercovici, C. Foias, and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math., No. 56, Amer. Math. Soc., Providence, 1985. MR 787041 (87g:47091)
  • [2] B. Chevreau, G. Exner, and C. Pearcy, Sur la réflexivité des contractions de l'espace hilbertien, C. R. Acad. Sci. Paris Sér. 1 305 (1987), 117-120. MR 901622 (88g:47031)
  • [3] B. Chevreau and C. Pearcy, On the structure of contraction operators, J. Funct. Anal. 76 (1988), 1-29. MR 923042 (90b:47030a)
  • [4] R. Olin and J. Thomson, Algebras of subnormal operators, J. Funct. Anal. 37 (1980), 271-301. MR 581424 (82a:47024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65, 47A15, 47D27

Retrieve articles in all journals with MSC: 47A65, 47A15, 47D27

Additional Information

Keywords: Dual operator algebras
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society