Fixed points of orientation reversing homeomorphisms of the plane

Author:
Krystyna Kuperberg

Journal:
Proc. Amer. Math. Soc. **112** (1991), 223-229

MSC:
Primary 54F15

MathSciNet review:
1064906

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an orientation reversing homeomorphism of the plane onto itself. If is a plane continuum invariant under , then has a fixed point in . Furthermore, if at least one of the bounded complementary domains of is invariant under , then has at least two fixed points in .

**[1]**Harold Bell,*A fixed point theorem for plane homeomorphisms*, Bull. Amer. Math. Soc.**82**(1976), no. 5, 778–780. MR**0410710**, 10.1090/S0002-9904-1976-14161-4**[2]**Harold Bell,*A fixed point theorem for plane homeomorphisms*, Fund. Math.**100**(1978), no. 2, 119–128. MR**0500879****[3]**-, preliminary manuscript.**[4]**Beverly Brechner,*Prime ends, indecomposable continua, and the fixed point property*, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 227–234 (1980). MR**583705****[5]**Morton Brown,*A short short proof of the Cartwright-Littlewood theorem*, Proc. Amer. Math. Soc.**65**(1977), no. 2, 372. MR**0461491**, 10.1090/S0002-9939-1977-0461491-0**[6]**M. L. Cartwright and J. E. Littlewood,*Some fixed point theorems*, Ann. of Math. (2)**54**(1951), 1–37. With appendix by H. D. Ursell. MR**0042690****[7]**O. H. Hamilton,*A short proof of the Cartwright-Littlewood fixed point theorem*, Canadian J. Math.**6**(1954), 522–524. MR**0064394****[8]**Sze-tsen Hu,*Homotopy theory*, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR**0106454**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F15

Retrieve articles in all journals with MSC: 54F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1064906-X

Keywords:
Fixed point

Article copyright:
© Copyright 1991
American Mathematical Society