Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on incomparable ultrafilters in the Rudin-Keisler order


Author: Eva Butkovičová
Journal: Proc. Amer. Math. Soc. 112 (1991), 577-578
MSC: Primary 04A20; Secondary 03E05
DOI: https://doi.org/10.1090/S0002-9939-1991-1045131-5
MathSciNet review: 1045131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {2^{ < {\mathbf{c}}}} > {\mathbf{c}}$ and $ p$ is an ultrafilter on $ \omega $ of character $ {\mathbf{c}}$ then there exist many ultrafilters that are incomparable with $ p$ in the Rudin-Keisler order.


References [Enhancements On Off] (What's this?)

  • [HvM] K. P. Hart and J. van Mill, Open problems on $ \beta \omega $, Problems in Topology (to appear). MR 1078643
  • [H] N. Hindman, Is there a point of $ {\omega ^*}$ that sees all others?, Proc. Amer. Math. Soc. 104 (1988), 1235-1238. MR 931732 (89d:04008)
  • [vM] J. van Mill, An introduction to $ \beta \omega $, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 504-568. MR 776619 (85k:54001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A20, 03E05

Retrieve articles in all journals with MSC: 04A20, 03E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1045131-5
Keywords: Ultrafilters, Rudin-Keisler order
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society