Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A remark on incomparable ultrafilters in the Rudin-Keisler order


Author: Eva Butkovičová
Journal: Proc. Amer. Math. Soc. 112 (1991), 577-578
MSC: Primary 04A20; Secondary 03E05
DOI: https://doi.org/10.1090/S0002-9939-1991-1045131-5
MathSciNet review: 1045131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {2^{ < {\mathbf{c}}}} > {\mathbf{c}}$ and $ p$ is an ultrafilter on $ \omega $ of character $ {\mathbf{c}}$ then there exist many ultrafilters that are incomparable with $ p$ in the Rudin-Keisler order.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A20, 03E05

Retrieve articles in all journals with MSC: 04A20, 03E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1045131-5
Keywords: Ultrafilters, Rudin-Keisler order
Article copyright: © Copyright 1991 American Mathematical Society