A growth condition for Fourier coefficients of functions of bounded entropy norm

Author:
W. Christopher Lang

Journal:
Proc. Amer. Math. Soc. **112** (1991), 433-439

MSC:
Primary 42A16

DOI:
https://doi.org/10.1090/S0002-9939-1991-1045141-8

MathSciNet review:
1045141

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple growth condition is found for the Fourier coefficients of continuous -periodic functions of bounded -entropy norm. This growth condition is equivalent to the condition given by Dabrowski. The entropy norms of certain random Fourier series are considered.

**[1]**Y. Chow and H. Teicher,*Probability theory: independence, interchangeability, martingales*, Springer-Verlag, New York, 1978. MR**513230 (80a:60004)****[2]**R. Dabrowski,*On Fourier coefficients of a continuous periodic function of bounded entropy norm*, Bull. Amer. Math. Soc. (N. S.)**18**(1988), 49-51. MR**919659 (89b:42002)****[3]**-,*On a natural connection between the entropy spaces and Hardy space*, Proc. Amer. Math. Soc.**104**(1988), 812-818. MR**964862 (89m:42007)****[4]**-,*Probability measure representation of norms associated with the notion of entropy*, Proc. Amer. Math. Soc.**90**(1984), 263-268. MR**727246 (86c:46020)****[5]**E. Hewitt,*Integration by parts for Stieltjes integrals*, Amer. Math. Monthly**67**(1960), 419-423. MR**0112937 (22:3783)****[6]**J.-P. Kahane,*Some random series of functions*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, New York, 1985. MR**833073 (87m:60119)****[7]**B. Korenblum,*On a class of Banach spaces associated with the notion of entropy*, Trans. Amer. Math. Soc.**290**(1985), 527-553. MR**792810 (87a:46063)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42A16

Retrieve articles in all journals with MSC: 42A16

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1045141-8

Keywords:
Fourier coefficients,
entropy norm,
random Fourier series

Article copyright:
© Copyright 1991
American Mathematical Society