Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Note on a theorem of Avakumović


Author: J. L. Geluk
Journal: Proc. Amer. Math. Soc. 112 (1991), 429-431
MSC: Primary 34E05; Secondary 26A12
DOI: https://doi.org/10.1090/S0002-9939-1991-1052570-5
MathSciNet review: 1052570
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short proof is given of a result due to Avakumović. More specifically the asymptotic behavior of the solution $ y\left( x \right) \to 0\left( {x \to \infty } \right)$ of the differential equation $ y'' = \phi \left( x \right){y^\lambda }\left( {\lambda > 1} \right)$ in case $ \phi \left( {tx} \right)/\phi \left( x \right) \to {t^\sigma }\left( {x \to \infty } \right),\sigma > - 2$ is given.


References [Enhancements On Off] (What's this?)

  • [1] V. G. Avakumović, Sur l'équation différentielle de Thomas-Fermi, Publ. Inst. Math. (Beograd)(N. S.) 1 (1947), 101-113. MR 0028491 (10:455c)
  • [2] A. A. Balkema, J. L. Geluk, and L. de Haan, An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. (2) 30 (1979), 385-416. MR 559046 (80m:40005)
  • [3] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Cambridge Univ. Press, Cambridge, 1987. MR 898871 (88i:26004)
  • [4] J. L. Geluk and L. de Haan, Regular variation, extensions and Tauberian theorems, CWI tract 40, Amsterdam, 1987. MR 906871 (89a:26002)
  • [5] V. Marić and M. Tomić, Asymptotic properties of solutions of the equation $ y'' = f\left( x \right)\phi \left( y \right)$, Math. Z. 149 (1976), 261-266. MR 0437864 (55:10785)
  • [6] -, Regular variation and asymptotic properties of solutions of nonlinear differential equations, Publ. Inst. Math. (Beograd) (N. S.) 21 (1977), 119-129. MR 0508433 (58:22774)
  • [7] -, Asmptotic properties of solutions of a generalized Thomas-Fermi equation, J. Differential Equations 35 (1980), 36-44.
  • [8] E. Omey, Regular variation and its applications to second order linear differential equations, Bull. Soc. Math. Belg. Sér. B 33 (1981), 207-229. MR 682648 (84d:34028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34E05, 26A12

Retrieve articles in all journals with MSC: 34E05, 26A12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1052570-5
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society