Additive properties of multiplicative subgroups of finite index in fields

Author:
Pedro Berrizbeitia

Journal:
Proc. Amer. Math. Soc. **112** (1991), 365-369

MSC:
Primary 12E99

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057940-7

MathSciNet review:
1057940

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Gallai's theorem, an -dimensional generalization of Van der Waerden's theorem on arithmetic progression, is used to prove the following theorem:

Let be a field and a subgroup of finite index . There is a positive integer , which depends only on , so that if or , then .

**[1]**Ronald L. Graham,*Rudiments of Ramsey theory*, CBMS Regional Conference Series in Mathematics, vol. 45, American Mathematical Society, Providence, R.I., 1981. MR**608630****[2]**Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer,*Ramsey theory*, John Wiley & Sons, Inc., New York, 1980. Wiley-Interscience Series in Discrete Mathematics; A Wiley-Interscience Publication. MR**591457****[3]**Kenneth F. Ireland and Michael I. Rosen,*A classical introduction to modern number theory*, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. MR**661047****[4]**A. Y. Khinchin,*Three pearls of number theory*, Graylock Press, Rochester, N. Y., 1952. MR**0046372****[5]**David B. Leep and Daniel B. Shapiro,*Multiplicative subgroups of index three in a field*, Proc. Amer. Math. Soc.**105**(1989), no. 4, 802–807. MR**963572**, https://doi.org/10.1090/S0002-9939-1989-0963572-X**[6]**B. L. Van der Waerden,*How the proof of Baudet's conjecture was found*, Studies in Pure Mathematics (L. Mirsky, ed.), Academic Press, London, 1971, pp. 251-260.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
12E99

Retrieve articles in all journals with MSC: 12E99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057940-7

Article copyright:
© Copyright 1991
American Mathematical Society