Array convergence of functions of the first Baire class

Author:
Helmut Knaust

Journal:
Proc. Amer. Math. Soc. **112** (1991), 529-532

MSC:
Primary 46E15; Secondary 46B15

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057955-9

MathSciNet review:
1057955

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every array of elements in a pointwise compact subset of the Baire- functions on a Polish space, whose iterated pointwise limit exists, is converging Ramsey-uniformly. An array in a Hausdorff space is said to converge Ramsey-uniformly to some in , if every subsequence of the positive integers has a further subsequence such that every open neighborhood of in contains all elements with except for finitely many .

**[1]**T. K. Boehme and M. Rosenfeld,*An example of two compact Hausdorff Fréchet spaces whose product is not Fréchet*, J. London Math. Soc.**8**(1974), 339-344. MR**0343242 (49:7986)****[2]**J. Bourgain, D. Fremlin, and M. Talagrand,*Pointwise compact sets of Baire-measurable functions*, Amer. J. Math.**100**(1978), 845-886. MR**509077 (80b:54017)****[3]**E. E. Ellentuck,*A new proof that analytic sets are Ramsey*, J. Symbolic Logic**39**(1974), 163-165. MR**0349393 (50:1887)****[4]**K. Kuratowski,*Topology*, Academic Press, New York, 1966. MR**0217751 (36:840)****[5]**E. Odell,*Applications of Ramsey theorems to Banach space theory*, Notes in Banach Spaces (H. E. Lacey, ed.), Univ. Texas Press, Austin, 1980, pp. 379-404. MR**606226 (83g:46018)****[6]**E. Odell and H. P. Rosenthal,*A double dual characterization of separable Banach spaces containing*, Israel J. Math.**20**(1975), 375-384. MR**0377482 (51:13654)****[7]**J. D. Pryce,*A device of R. J. Whitley's applied to pointwise compactness in spaces of continuous functions*, Proc. London Math. Soc.**23**(1971), 532-546. MR**0296670 (45:5729)****[8]**H. P. Rosenthal,*Some remarks concerning unconditional basic sequences*, Longhorn Notes 1982-83, The University of Texas, Austin, pp. 15-48. MR**832215****[9]**J. Silver,*Every analytic set is Ramsey*, J. Symbolic Logic**35**(1970), 60-64. MR**0332480 (48:10807)****[10]**J. Stern,*A Ramsey theorem for trees, with an application to Banach spaces*, Israel J. Math.**29**(1978), 179-188. MR**0476554 (57:16114)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E15,
46B15

Retrieve articles in all journals with MSC: 46E15, 46B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057955-9

Keywords:
First Baire class,
array convergence,
Ramsey theory

Article copyright:
© Copyright 1991
American Mathematical Society