Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Higher monotonicity properties and inequalities for zeros of Bessel functions


Authors: Laura Nicolò-Amati Gori, Andrea Laforgia and Martin E. Muldoon
Journal: Proc. Amer. Math. Soc. 112 (1991), 513-520
MSC: Primary 33C10
DOI: https://doi.org/10.1090/S0002-9939-1991-1062389-7
MathSciNet review: 1062389
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: L. Lorch and P. Szegö have considered the sign-regularity of the higher differences (with respect to the rank $ k$) of the sequence $ \{ {c_{\nu k}}\} $ of positive zeros of the Bessel function $ {C_\nu }(x)$. Our main purpose here is to extend one of their main results to the higher derivatives with respect to $ \kappa $ when $ {c_{\nu k}}$ is appropriately defined as a function of a continuous variable $ \kappa $ rather than the discrete variable $ k$, and the difference operator is replaced by a derivative operator. We also present some inequalities arising from these and other results.


References [Enhancements On Off] (What's this?)

  • [1] A. Elbert, L. Gatteschi, and A. Laforgia, On the concavity of zeros of Bessel functions, Appl. Anal. 16 (1983), 261-278. MR 718534 (85c:33003)
  • [2] A. Elbert and A. Laforgia, On the square of the zeros of Bessel functions, SIAM J. Math. Anal. 15 (1984), 206-212. MR 728696 (85a:33011)
  • [3] -, Monotonicity properties of the zeros of Bessel functions, SIAM J. Math. Anal. 17 (1986), 1483-1488. MR 860929 (87k:33006)
  • [4] W. Feller, An introduction to probability theory and its applications, vol. 2, Wiley, 1966. MR 0210154 (35:1048)
  • [5] C J. de La Vallée Poussin, Cours d'analyse infinitésimale, 12th ed., Louvain and Paris, 1959.
  • [6] L. Lorch and P. Szegö, Higher monotonicity properties of certain Sturm-Liouville functions, Acta Math. 109 (1963), 55-73. MR 0147695 (26:5209)
  • [7] L. Lorch, M. E. Muldoon, and P. Szegö, Higher monotonicity properties of certain Sturm-Liouville functions. III, Canad. J. Math. 22 (1970), 1238-1265. MR 0274845 (43:603)
  • [8] -, Higher monotonicity properties of certain Sturm-Liouville functions. IV, Canad. J. Math. 24 (1972), 349-368. MR 0298113 (45:7165)
  • [9] M. E. Muldoon, Higher monotonicity properties of certain Sturm-Liouville functions. V, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 23-37. MR 0445033 (56:3378)
  • [10] G. Pólya and G. Szegö, Problems and theorems in analysis II, Springer-Verlag, 1972.
  • [11] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, 1944. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33C10

Retrieve articles in all journals with MSC: 33C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1062389-7
Keywords: Bessel functions, zeros, higher monotonicity, inequalities
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society