Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lebesgue's theorem of differentiation in Fréchet lattices


Author: Karl-Goswin Grosse-Erdmann
Journal: Proc. Amer. Math. Soc. 112 (1991), 371-379
MSC: Primary 46G05; Secondary 46A40
DOI: https://doi.org/10.1090/S0002-9939-1991-1062390-3
MathSciNet review: 1062390
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Lebesgue's differentiation theorem (LDT) states that every monotonic real function is differentiable a.e. We investigate the validity of this theorem for functions with values in topological vector lattices. It is shown that a Fréchet lattice satisfies (LDT) iff it is isomorphic to a generalized echelon space, a Banach lattice satisfies (LDT) iff it is isomorphic to some $ {l^1}\left( \Gamma \right)$.


References [Enhancements On Off] (What's this?)

  • [1] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, RI, 1977. MR 0453964 (56:12216)
  • [2] L. Egghe, On sub- and superpramarts with values in a Banach lattice, Measure Theory Oberwolfach 1981 (Oberwolfach 1981), Lecture Notes in Math., vol. 945, Springer-Verlag, Berlin, Heidelberg, and New York, 1982, pp. 352-365. MR 675299 (84f:60076)
  • [3] B. Faires and T. J. Morrison, The Jordan decomposition of vector-valued measures, Proc. Amer. Math. Soc. 60 (1976), 139-143. MR 0419723 (54:7741)
  • [4] D. H. Fremlin, Abstract Köthe spaces. II, Proc. Cambridge Philos. Soc. 63 (1967), 951-956. MR 0216272 (35:7107)
  • [5] -, Topological Riesz spaces and measure theory, Cambridge Univ. Press, Cambridge, 1974. MR 0454575 (56:12824)
  • [6] Y. Kōmura and S. Koshi, Nuclear vector lattices, Math. Ann. 163 (1966), 105-110. MR 0192327 (33:553)
  • [7] G. Köthe, Topological vector spaces. I, Springer-Verlag, Berlin, Heidelberg, and New York, 1969. MR 0248498 (40:1750)
  • [8] H. H. Schaefer, Topological vector spaces, Springer-Verlag, New York, Heidelberg, and Berlin, 1971. MR 0342978 (49:7722)
  • [9] -, Banach lattices and positive operators, Springer-Verlag, New York, Heidelberg, and Berlin, 1974. MR 0423039 (54:11023)
  • [10] U. Schlotterbeck, Über Klassen majorisierbarer Operatoren auf Banachverbänden, Dissertation, Tübingen, 1969.
  • [11] J. Szulga, On the submartingale characterization of Banach lattices isomorphic to $ {l_1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 65-68. MR 0478265 (57:17750)
  • [12] B. Walsh, Ordered vector sequence spaces and related classes of linear operators, Math. Ann. 206 (1973), 89-138. MR 0328541 (48:6883)
  • [13] Y. C. Wong, Characterizations of the topology of uniform convergence on order-intervals, Hokkaido Math. J. 5 (1976), 164-200. MR 0454582 (56:12831)
  • [14] Y. C. Wong and K. F. Ng, Nuclear spaces and generalized AL-spaces, Southeast Asian Bull. Math. 5 (1981), 45-58. MR 638689 (83a:46008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46G05, 46A40

Retrieve articles in all journals with MSC: 46G05, 46A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1062390-3
Keywords: Differentiation, monotonic functions, Gel'fand property, locally convex vector lattices, generalized AL-spaces, Köthe spaces, Köthe sequence spaces
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society