Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Common fixed points in hyperbolic Riemann surfaces and convex domains

Authors: Marco Abate and Jean-Pierre Vigué
Journal: Proc. Amer. Math. Soc. 112 (1991), 503-512
MSC: Primary 32H50; Secondary 30F10, 58C30
MathSciNet review: 1065938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that a commuting family of continuous self-maps of a bounded convex domain in $ {\mathbb{C}^n}$ which are holomorphic in the interior has a common fixed point. The proof makes use of three basic ingredients: iteration theory of holomorphic maps, a precise description of the structure of the boundary of a convex domain, and a similar result for commuting families of self-maps of a hyperbolic domain of a compact Riemann surface.

References [Enhancements On Off] (What's this?)

  • [A1] M. Abate, Horospheres and iterates of holomorphic maps, Math. Z. 198 (1988), 225-238. MR 939538 (90e:32028)
  • [A2] -, Iteration theory on weakly convex domains, Seminar in Complex Analysis and Geometry 1988, Editel, Rende, Cosenza, 1990. MR 1222246 (94h:32046)
  • [A3] -, Common fixed points of commuting holomorphic maps, Math. Ann. 283 (1989), 645-655. MR 990593 (90k:32074)
  • [A4] -, Iteration theory of holomorphic maps on taut manifolds, Mediterranean Press, Rende, Cosenza, 1989. MR 1098711 (92i:32032)
  • [B] W. M. Boyce, Commuting functions with no common fixed points, Trans. Amer. Math. Soc. 137 (1969), 77-92. MR 0236331 (38:4627)
  • [C] H. Cartan, Sur les rétractions d'une variété, C. R. Acad. Sci. Paris 303 (1986), 715-716. MR 870703 (88i:58009)
  • [Co] C. C. Cowen, Commuting analytic functions, Trans. Amer. Math. Soc. 283 (1984), 685-695. MR 737892 (85i:30054)
  • [E] D. J. Eustice, Holomorphic idempotents and common fixed points on the $ 2$-disk, Michigan Math. J. 19 (1972), 347-352. MR 0313486 (47:2040)
  • [HS] L. F. Heath and T. J. Suffridge, Holomorphic retracts in complex $ n$-space, Illinois J. Math. 25 (1981), 125-135. MR 602903 (82e:32003)
  • [H] J. P. Huneke, On common fixed points of commuting continuous functions on an interval, Trans. Amer. Math. Soc. 139 (1969), 371-381. MR 0237724 (38:6005)
  • [K] P. Kiernan, Hyperbolically imbedded spaces and the big Picard theorem, Math. Ann. 204 (1973), 203-209. MR 0372260 (51:8476)
  • [KS] T. Kuczumow and A. Stachura, Iterates of holomorphic and $ {k_D}$-nonexpansive mappings in convex domains in $ {\mathbb{C}^n}$, Adv. in Math. 81 (1990), 90-98. MR 1051224 (91d:32037)
  • [N] R. Narasimhan, Several complex variables, Univ. of Chicago Press, Chicago, 1971. MR 0342725 (49:7470)
  • [R] H. Rossi, Vector fields on analytic spaces, Ann. of Math. 78 (1963), 455-467. MR 0162973 (29:277)
  • [S] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706. MR 0165508 (29:2790)
  • [Su] T. J. Suffridge, Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J. 21 (1974), 309-314. MR 0367661 (51:3903)
  • [V1] J.-P. Vigué, Géodésiques complexes et points fixes d'applications holomorphes, Adv. in Math. 52 (1984), 241-247. MR 744858 (86d:32027)
  • [V2] -, Points fixes d'applications holomorphes dans un domaine borné convexe de $ {\mathbb{C}^n}$, Trans. Amer. Math. Soc. 289 (1985), 345-353. MR 779068 (86f:32026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H50, 30F10, 58C30

Retrieve articles in all journals with MSC: 32H50, 30F10, 58C30

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society