Bernstein-type inequalities for the derivatives of constrained polynomials

Author:
Tamás Erdélyi

Journal:
Proc. Amer. Math. Soc. **112** (1991), 829-838

MSC:
Primary 41A17

DOI:
https://doi.org/10.1090/S0002-9939-1991-1036985-7

MathSciNet review:
1036985

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalizing a number of earlier results, P. Borwein established a sharp Markov-type inequality on for the derivatives of polynomials having at most zeros in the complex unit disk. Using Lorentz representation and a Markov-type inequality for the derivative of Müntz polynomials due to D. Newman, we give a surprisingly short proof of Borwein's Theorem. The new result of this paper is to obtain a sharp Bernstein-type analogue of Borwein's Theorem. By the same method we prove a sharp Bernstein-type inequality for another wide family of classes of constrained polynomials.

**[1]**P. Borwein,*Markov's inequality for polynomials with real zeros*, Proc. Amer. Math. Soc.**93**(1985), 43-47. MR**766524 (86g:41024)****[2]**T. Erdélyi,*Markov-type estimates for certain classes of constrained polynomials*, Constr. Approx.**5**(1989), 347-356. MR**996935 (90f:41009)****[3]**-,*Pointwise estimates for derivatives of polynomials with restricted zeros*, Colloq. Math. Soc. J. Bolyai**49**; Alfred Haar Memorial Conference (Budapest, 1985), North-Holland, Amsterdam and Budapest, 1987, pp. 329-343. MR**899542 (88f:41025)****[4]**T. Erdélyi and J. Szabados,*Bernstein-type inequalities for a class of polynomials*, Acta. Math. Hung.**53**(1989), 237-251. MR**987055 (90f:42001)****[5]**P. Erdös,*On extremal properties of the derivatives of polynomials*, Ann. of Math.**41**(1940), 310-313. MR**0001945 (1:323g)****[6]**G. G. Lorentz,*Degree of approximation by polynomials with positive coefficients*, Math. Ann.**151**(1963), 239-251. MR**0155135 (27:5075)****[7]**A. Máté,*Inequalities for derivatives of polynomials with restricted zeros*, Proc. Amer. Math. Soc.**88**(1981), 221-225. MR**609655 (83g:26022)****[8]**D. J. Newman,*Derivative bounds for Müntz polynomials*, J. Approx. Theory**18**(1976), 360-362. MR**0430604 (55:3609)****[9]**J. T. Scheick,*Inequalities for derivatives of polynomials of special type*, J. Approx. Theory**6**(1972), 354-358. MR**0342909 (49:7653)****[10]**J. Szabados,*Bernstein and Markov type estimates for the derivative of a polynomial with real zeros*, Functional Analysis and Approximation, Birkhäuser Verlag, Basel, 1981, pp. 177-188. MR**650274 (83k:41014)****[11]**J. Szabados and A. K. Varma,*Inequalities for derivatives of polynomials having real zeros*, Approximation Theory III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 881-888. MR**602815 (82b:26017)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A17

Retrieve articles in all journals with MSC: 41A17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1036985-7

Keywords:
Markov and Bernstein type inequalities,
polynomials with restricted zeros

Article copyright:
© Copyright 1991
American Mathematical Society