Bernstein-type inequalities for the derivatives of constrained polynomials

Author:
Tamás Erdélyi

Journal:
Proc. Amer. Math. Soc. **112** (1991), 829-838

MSC:
Primary 41A17

DOI:
https://doi.org/10.1090/S0002-9939-1991-1036985-7

MathSciNet review:
1036985

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generalizing a number of earlier results, P. Borwein established a sharp Markov-type inequality on for the derivatives of polynomials having at most zeros in the complex unit disk. Using Lorentz representation and a Markov-type inequality for the derivative of Müntz polynomials due to D. Newman, we give a surprisingly short proof of Borwein's Theorem. The new result of this paper is to obtain a sharp Bernstein-type analogue of Borwein's Theorem. By the same method we prove a sharp Bernstein-type inequality for another wide family of classes of constrained polynomials.

**[1]**Peter Borwein,*Markov’s inequality for polynomials with real zeros*, Proc. Amer. Math. Soc.**93**(1985), no. 1, 43–47. MR**766524**, https://doi.org/10.1090/S0002-9939-1985-0766524-4**[2]**T. Erdélyi,*Markov-type estimates for certain classes of constrained polynomials*, Constr. Approx.**5**(1989), no. 3, 347–356. MR**996935**, https://doi.org/10.1007/BF01889614**[3]**T. Erdélyi,*Pointwise estimates for derivatives of polynomials with restricted zeros*, A. Haar memorial conference, Vol. I, II (Budapest, 1985) Colloq. Math. Soc. János Bolyai, vol. 49, North-Holland, Amsterdam, 1987, pp. 329–343. MR**899542****[4]**T. Erdélyi and J. Szabados,*Bernstein type inequalities for a class of polynomials*, Acta Math. Hungar.**53**(1989), no. 1-2, 237–251. MR**987055**, https://doi.org/10.1007/BF02170073**[5]**P. Erdös,*On extremal properties of the derivatives of polynomials*, Ann. of Math. (2)**41**(1940), 310–313. MR**0001945**, https://doi.org/10.2307/1969005**[6]**G. G. Lorentz,*The degree of approximation by polynomials with positive coefficients*, Math. Ann.**151**(1963), 239–251. MR**0155135**, https://doi.org/10.1007/BF01398235**[7]**Attila Máté,*Inequalities for derivatives of polynomials with restricted zeros*, Proc. Amer. Math. Soc.**82**(1981), no. 2, 221–225. MR**609655**, https://doi.org/10.1090/S0002-9939-1981-0609655-8**[8]**D. J. Newman,*Derivative bounds for Müntz polynomials*, J. Approximation Theory**18**(1976), no. 4, 360–362. MR**0430604****[9]**John T. Scheick,*Inequalities for derivatives of polynomials of special type*, J. Approximation Theory**6**(1972), 354–358. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VIII. MR**0342909****[10]**József Szabados,*Bernstein and Markov type estimates for the derivative of a polynomial with real zeros*, Functional analysis and approximation (Oberwolfach, 1980) Internat. Ser. Numer. Math., vol. 60, Birkhäuser, Basel-Boston, Mass., 1981, pp. 177–188. MR**650274****[11]**Josef Szabados and A. K. Varma,*Inequalities for derivatives of polynomials having real zeros*, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 881–887. MR**602815**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
41A17

Retrieve articles in all journals with MSC: 41A17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1036985-7

Keywords:
Markov and Bernstein type inequalities,
polynomials with restricted zeros

Article copyright:
© Copyright 1991
American Mathematical Society