A fixed point approach to homological perturbation theory

Authors:
Donald W. Barnes and Larry A. Lambe

Journal:
Proc. Amer. Math. Soc. **112** (1991), 881-892

MSC:
Primary 55U15

MathSciNet review:
1057939

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the problem addressed by classical homological perturbation theory can be reformulated as a fixed point problem leading to new insights into the nature of its solutions. We show, under mild conditions, that the solution is essentially unique.

**[B]**R. Brown,*The twisted Eilenberg-Zilber theorem*, Celebrazioni Archimedee del secolo XX, Simposio di topologia (1967), 34-37.**[C]**R. Courant,*Differential and integral calculus*, Vol. 1, Blackie and Son, Glasgow, London, 1934.**[G]**V. K. A. M. Gugenheim,*On the chain-complex of a fibration*, Illinois J. Math.**16**(1972), 398–414. MR**0301736****[GL]**V. K. A. M. Gugenheim and L. A. Lambe,*Perturbation theory in differential homological algebra. I*, Illinois J. Math.**33**(1989), no. 4, 566–582. MR**1007895****[GLS1]**V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff,*Algebraic aspects of Chen’s twisting cochain*, Illinois J. Math.**34**(1990), no. 2, 485–502. MR**1046572****[GLS2]**V. K. A. M. Gugenheim, L. A. Lambe, and J. D. Stasheff,*Perturbation theory in differential homological algebra. II*, Illinois J. Math.**35**(1991), no. 3, 357–373. MR**1103672****[HW]**P. J. Hilton and S. Wylie,*Homology theory: An introduction to algebraic topology*, Cambridge University Press, New York, 1960. MR**0115161****[HK]**Johannes Huebschmann and Tornike Kadeishvili,*Small models for chain algebras*, Math. Z.**207**(1991), no. 2, 245–280. MR**1109665**, 10.1007/BF02571387**[L]**Larry A. Lambe,*Resolutions via homological perturbation*, J. Symbolic Comput.**12**(1991), no. 1, 71–87. MR**1124305**, 10.1016/S0747-7171(08)80140-X**[LS]**Larry Lambe and Jim Stasheff,*Applications of perturbation theory to iterated fibrations*, Manuscripta Math.**58**(1987), no. 3, 363–376. MR**893160**, 10.1007/BF01165893**[S]**W. Shih,*Homology des espaces fibrés*, Inst. des Hautes Études Sci.**13**(1962), 93-176.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55U15

Retrieve articles in all journals with MSC: 55U15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1991-1057939-0

Keywords:
Chain homotopy,
homological perturbation,
fixed point,
iterative methods

Article copyright:
© Copyright 1991
American Mathematical Society