Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Finitely embedded commutative rings

Author: Carl Faith
Journal: Proc. Amer. Math. Soc. 112 (1991), 657-659
MSC: Primary 13E10; Secondary 16L60, 16P20, 16P60
Addendum: Proc. Amer. Math. Soc. 118 (1993), null.
MathSciNet review: 1057942
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem of Ginn and Moss [G-M] states that a right finitely embedded (= with finite essential right socle) two-sided Noetherian ring is Artinian. An example of Schelter and Small [S-S] can be applied to show that the theorem fails for right finitely embedded rings with the ascending chain conditions on right and left annihilators. We show here, however, that finitely embedded commutative rings with the acc on annihilator (= acc $ \bot $) are Artinian. The proof uses the author's characterization in [Fl] of acc $ \bot $ rings, and the Levitzki [L] and Herstein-Small [H-S] theorem on the nilpotency of nil ideals in $ 2$-sided ace $ \bot $ rings. A corollary is a result of Shizhong [Sh] that shows commutative subdirectly irreducible acc $ \bot $ rings are QF.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13E10, 16L60, 16P20, 16P60

Retrieve articles in all journals with MSC: 13E10, 16L60, 16P20, 16P60

Additional Information

PII: S 0002-9939(1991)1057942-0
Article copyright: © Copyright 1991 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia