Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Henselian rings and Weierstrass polynomials


Author: Budh Nashier
Journal: Proc. Amer. Math. Soc. 112 (1991), 685-690
MSC: Primary 13F20; Secondary 13B25, 13J15
MathSciNet review: 1057944
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give two characterizations of a one-dimensional Henselian domain. If $ \left( {A,\mathcal{M}} \right)$ is a local domain of Krull dimension at least two, or if $ \left( {A,\mathcal{M}} \right)$ is a one-dimensional Henselian local domain, then a polynomial $ f$ in $ A\left[ T \right]$ is Weierstrass if and only if $ \left( {\mathcal{M},T} \right)$ is the only maximal ideal of $ A\left[ T \right]$ that contains $ f$.


References [Enhancements On Off] (What's this?)

  • [1] Emil Artin and John T. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74–77. MR 0044509
  • [2] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR 0155856
  • [3] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F20, 13B25, 13J15

Retrieve articles in all journals with MSC: 13F20, 13B25, 13J15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-1057944-4
Article copyright: © Copyright 1991 American Mathematical Society